论文标题

石墨烯双层的连续性有效的哈密顿量,用于显微理论的任意平滑晶格变形

Continuum effective Hamiltonian for graphene bilayers for an arbitrary smooth lattice deformation from microscopic theories

论文作者

Vafek, Oskar, Kang, Jian

论文摘要

我们提供了从微观晶格理论开始的石墨烯双层的连续性汉密尔顿的系统真实空间推导,从而允许任意不均匀的平滑晶格变形,包括扭曲。分析了两个不同的显微镜模型:首先,是模型和第二个Ab-Initio衍生模型的Slater-Koster。我们设想,我们的有效哈密顿量可以与特定设备中扭曲的双层石墨烯中实验确定的原子晶格变形一起使用,以预测和比较电子光谱与扫描隧道光谱测量值。作为副产品,我们的方法可从微观模型中为任何双层堆叠的微观模型中的连续性hamiltonian提供电子 - 音波耦合。在同伴论文中,我们详细分析了魔术角扭曲双层石墨烯的放松原子构型的连续模型。

We provide a systematic real space derivation of the continuum Hamiltonian for a graphene bilayer starting from a microscopic lattice theory, allowing for an arbitrary inhomogeneous smooth lattice deformation, including a twist. Two different microscopic models are analyzed: first, a Slater-Koster like model and second, ab-initio derived model. We envision that our effective Hamiltonian can be used in conjunction with an experimentally determined atomic lattice deformation in twisted bilayer graphene in a specific device to predict and compare the electronic spectra with scanning tunneling spectroscopy measurements. As a byproduct, our approach provides electron-phonon couplings in the continuum Hamiltonian from microscopic models for any bilayer stacking. In the companion paper we analyze in detail the continuum models for relaxed atomic configurations of magic angle twisted bilayer graphene.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源