论文标题
在线发现大规模轨迹流的不断发展的群体
Online Discovery of Evolving Groups over Massive-Scale Trajectory Streams
论文作者
论文摘要
对象跟踪技术的普遍性日益增加导致以轨迹流的形式收集的大量时空数据。从移动物体在轨迹流中移动的运动行为发现有用的组模式对于从运输管理到军事监视的实时应用至关重要。在此的驱动下,我们首先提出了一种新型模式,称为“不断发展的群体”,该模式模拟了移动对象的异常组事件,这些事件在不断发展的流轨迹中在密度连接的簇中一起传播。我们对大阪行人数据和北京出租车数据的理论分析和实证研究证明了其在捕获流媒体环境中移动对象事件的发展,进化和趋势的有效性。此外,我们提出了一种发现方法,该方法可以有效地支持使用滑动窗口在大规模轨迹流中对不断发展的组进行在线检测。它包含三个阶段,以及一系列新颖的优化技术,旨在最大程度地降低计算成本。此外,为了扩展到不断发展的流的大量工作负载,我们通过使用基于扇区的分区将发现方法扩展到并行框架。我们全面的实证研究表明,我们的在线发现框架在现实世界中有效且有效地有效。
The increasing pervasiveness of object tracking technologies leads to huge volumes of spatiotemporal data collected in the form of trajectory streams. The discovery of useful group patterns from moving objects' movement behaviours in trajectory streams is critical for real-time applications ranging from transportation management to military surveillance. Motivated by this, we first propose a novel pattern, called evolving group, which models the unusual group events of moving objects that travel together within density connected clusters in evolving streaming trajectories. Our theoretical analysis and empirical study on the Osaka Pedestrian data and Beijing Taxi data demonstrate its effectiveness in capturing the development, evolution, and trend of group events of moving objects in streaming context. Moreover, we propose a discovery method that efficiently supports online detection of evolving groups over massive-scale trajectory streams using a sliding window. It contains three phases along with a set of novel optimization techniques designed to minimize the computation costs. Furthermore, to scale to huge workloads over evolving streams, we extend our discovery method to a parallel framework by using a sector-based partition. Our comprehensive empirical study demonstrates that our online discovery framework is effective and efficient on real-world high-volume trajectory streams.