论文标题
布局桥接文本对图像合成
Layout-Bridging Text-to-Image Synthesis
论文作者
论文摘要
文本对图像综合的症结很大,源于保持输入文本和合成图像之间的跨模式语义一致性的困难。试图直接建模文本图像映射的典型方法只能在文本中捕获指示常见对象或动作但无法学习其空间分布模式的文本中的关键字。规避此限制的一种有效方法是生成图像布局作为指导,这是通过一些方法尝试的。然而,由于输入文本和对象位置的多样性,这些方法无法生成实际有效的布局。在本文中,我们推动在文本到图像生成和布局到图像合成中进行有效的建模。具体而言,我们将文本到序列生成作为序列到序列建模任务,并在变压器上构建我们的模型,以通过对它们之间的顺序依赖性进行建模,以了解对象之间的空间关系。在布局到图像综合的阶段,我们专注于在布局中每个对象中的每个对象学习文本 - 视觉对齐,以精确地将输入文本纳入布局到图像图像综合过程。为了评估生成的布局的质量,我们设计了一个新的度量标准,称为布局质量评分,该评分既考虑了布局中边界框的绝对分布误差,又考虑了它们之间的相互空间关系。在三个数据集上进行的广泛实验表明,在预测布局和从给定文本中综合图像的方法上,我们方法的性能优于最先进的方法。
The crux of text-to-image synthesis stems from the difficulty of preserving the cross-modality semantic consistency between the input text and the synthesized image. Typical methods, which seek to model the text-to-image mapping directly, could only capture keywords in the text that indicates common objects or actions but fail to learn their spatial distribution patterns. An effective way to circumvent this limitation is to generate an image layout as guidance, which is attempted by a few methods. Nevertheless, these methods fail to generate practically effective layouts due to the diversity of input text and object location. In this paper we push for effective modeling in both text-to-layout generation and layout-to-image synthesis. Specifically, we formulate the text-to-layout generation as a sequence-to-sequence modeling task, and build our model upon Transformer to learn the spatial relationships between objects by modeling the sequential dependencies between them. In the stage of layout-to-image synthesis, we focus on learning the textual-visual semantic alignment per object in the layout to precisely incorporate the input text into the layout-to-image synthesizing process. To evaluate the quality of generated layout, we design a new metric specifically, dubbed Layout Quality Score, which considers both the absolute distribution errors of bounding boxes in the layout and the mutual spatial relationships between them. Extensive experiments on three datasets demonstrate the superior performance of our method over state-of-the-art methods on both predicting the layout and synthesizing the image from the given text.