论文标题

单调在度量表面上功能的coarea不平等

Coarea Inequality for Monotone Functions on Metric Surfaces

论文作者

Esmayli, Behnam, Ikonen, Toni, Rajala, Kai

论文摘要

我们研究了公制表面的Coarea不平等现象 - 拓扑表面的度量空间,没有边界,并且具有局部有限的Hausdorff 2-Measure $ \ MATHCAL {H}^2 $。对于单调sobolev函数$ u \ u \ colon x \ to \ mathbb {r} $,我们证明了不等式 \ begin {equation*} \ int_ {\ mathbb {r}}}^{*} \ int_ {u^{ - 1}(t)} g \,D \ Mathcal {H}^{1} \,dt \ leq κ \ int_ {x} Gρ \,d \ Mathcal {h}^{2} \ quad \ text {对于每个borel $ g \ colon x \ rightarrow \ left [0,\ infty \ right] $,} \ end {equation*},其中$ρ$是$ u $的任何可集成的上梯度。如果$ρ$是本地$ l^2 $ - 积分,我们将获得尖锐的常数$κ= 4/π$。单调性条件无法删除,因为我们给出了公制表面$ x $的示例和lipschitz函数$ u \ u \ colon x \ to \ mathbb {r} $,因此上述coarea不平等是失败的。

We study coarea inequalities for metric surfaces -- metric spaces that are topological surfaces, without boundary, and which have locally finite Hausdorff 2-measure $\mathcal{H}^2$. For monotone Sobolev functions $u\colon X \to \mathbb{R} $, we prove the inequality \begin{equation*} \int_{ \mathbb{R} }^{*} \int_{ u^{-1}(t) } g \,d\mathcal{H}^{1} \,dt \leq κ \int_{ X } g ρ \,d\mathcal{H}^{2} \quad\text{for every Borel $g \colon X \rightarrow \left[0,\infty\right]$,} \end{equation*} where $ρ$ is any integrable upper gradient of $u$. If $ρ$ is locally $L^2$-integrable, we obtain the sharp constant $κ=4/π$. The monotonicity condition cannot be removed as we give an example of a metric surface $X$ and a Lipschitz function $u \colon X \to \mathbb{R}$ for which the coarea inequality above fails.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源