论文标题

无尺度和任务不合时宜的攻击:使用补丁缝生成器生成照片真实的对抗模式

Scale-free and Task-agnostic Attack: Generating Photo-realistic Adversarial Patterns with Patch Quilting Generator

论文作者

Gao, Xiangbo, Luo, Cheng, Lin, Qinliang, Xie, Weicheng, Liu, Minmin, Shen, Linlin, Kusumam, Keerthy, Song, Siyang

论文摘要

\ noindent传统的L_P规范限制的图像攻击算法的转移性不佳,对黑匣子方案的转移性差,并且对防御算法的鲁棒性不佳。最近基于CNN发生器的攻击方法可以将无限制和语义意义的实体综合到图像中,这被证明是可转移且健壮的。但是,这种方法通过合成本地对抗实体来攻击图像,这些实体仅适用于攻击特定内容或执行全局攻击,仅适用于特定的图像量表。在本文中,我们提出了一种新颖的补丁Quilting生成对抗网络(PQ-GAN),以学习第一个无标度的CNN发电机,该发电机可用于以任意尺度攻击各种计算机视觉任务的图像。对产生的对抗性示例的可转让性,对防御框架的鲁棒性以及视觉质量评估的主要调查表明,拟议的基于PQG的攻击框架的表现优于其他九个最先进的对抗攻击方法,当攻击对两个标准评估数据集(即成像网和城市范围)进行训练的神经网络。

\noindent Traditional L_p norm-restricted image attack algorithms suffer from poor transferability to black box scenarios and poor robustness to defense algorithms. Recent CNN generator-based attack approaches can synthesize unrestricted and semantically meaningful entities to the image, which is shown to be transferable and robust. However, such methods attack images by either synthesizing local adversarial entities, which are only suitable for attacking specific contents or performing global attacks, which are only applicable to a specific image scale. In this paper, we propose a novel Patch Quilting Generative Adversarial Networks (PQ-GAN) to learn the first scale-free CNN generator that can be applied to attack images with arbitrary scales for various computer vision tasks. The principal investigation on transferability of the generated adversarial examples, robustness to defense frameworks, and visual quality assessment show that the proposed PQG-based attack framework outperforms the other nine state-of-the-art adversarial attack approaches when attacking the neural networks trained on two standard evaluation datasets (i.e., ImageNet and CityScapes).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源