论文标题

通过用户足迹识别用户配置文件

Identifying User Profiles Via User Footprints

论文作者

Kowsari, Yasamin

论文摘要

用户识别一直是隐私和安全主题研究的主要研究领域。用户可以利用多个在线社交网络(OSN)访问各种文本,视频和链接,并与他们的朋友联系。识别与社交网络中用户多个虚拟活动相对应的用户配置文件对于相关领域的开发,例如网络安全性,用户行为模式分析和用户建议系统非常重要。此外,根据公共内容预测个人属性是一个具有挑战性的话题。在这项工作中,我们进行了一项实证研究,并提出了一个具有相当大表现的计划。在这项工作中,我们调查了Reddit,这是一个著名的询问和回答的社交网络。通过考虑可用的个人和非个人属性,我们根据将不同功能(例如用户活动)映射到特殊用户配置文件的主要发现。我们收集了一个由5000个样本组成的广泛分布的数据集。为了将非个人属性映射到个人属性中,已经使用了基于支持向量机(SVM),随机森林(RF)和深度信念网络的分类方法。实验结果证明了所提出的方法的有效性,并实现了高于89%的分类精度。

User identification has been a major field of research in privacy and security topics. Users might utilize multiple Online Social Networks (OSNs) to access a variety of text, videos, and links, and connect to their friends. Identifying user profiles corresponding to multiple virtual activities of users across social networks is significant for the development of related fields, such as network security, user behavior patterns analysis, and user recommendation systems. In addition, predicting personal attributes based on public content is a challenging topic. In this work, we perform an empirical study and proposed a scheme with considerable performance. In this work, we investigate Reddit, a famous social network for questioning and answering. By considering available personal and non-personal attributes, we discuss our main findings based on mapping the different features such as user activities to a special user profile. we collected a dataset with wide distribution consisting of 5000 samples. To map non-personal attributes to personal attributes, a classification approach based on support vector machines (SVM), Random Forests (RF), and deep belief network has been used. Experimental results demonstrate the effectiveness of the proposed methodology and achieved classification accuracy higher than 89%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源