论文标题

在自主导航的因子图中处理受限的优化

Handling Constrained Optimization in Factor Graphs for Autonomous Navigation

论文作者

Bazzana, Barbara, Guadagnino, Tiziano, Grisetti, Giorgio

论文摘要

因子图是用于代表机器人技术各种问题的图形模型,例如运动(SFM),同时定位和映射(SLAM)和校准。通常,在他们的核心上,他们有一个优化问题,其术语仅取决于一小部分变量。因子图解决器利用问题的局部性,以大大减少迭代最小二乘(ILS)方法的计算时间。尽管非常强大,但他们的应用通常仅限于无约束的问题。在本文中,我们通过引入Lagrange乘数方法的因子图版本来对因子图内的变量进行建模。我们通过根据因子图提供完整的导航堆栈来显示我们方法的潜力。与标准导航堆栈不同,我们可以使用因子图对本地计划和本地化的最佳控制进行建模,并使用标准ILS方法来解决这两个问题。我们在现实世界自主导航方案中验证了我们的方法,并将其与ROS中实现的事实上的标准导航堆栈进行了比较。比较实验表明,对于手头的应用程序,我们的系统的表现优于运行时的标准非线性编程求解器内部优化器(IPOPT),同时实现了类似的解决方案。

Factor graphs are graphical models used to represent a wide variety of problems across robotics, such as Structure from Motion (SfM), Simultaneous Localization and Mapping (SLAM) and calibration. Typically, at their core, they have an optimization problem whose terms only depend on a small subset of variables. Factor graph solvers exploit the locality of problems to drastically reduce the computational time of the Iterative Least-Squares (ILS) methodology. Although extremely powerful, their application is usually limited to unconstrained problems. In this paper, we model constraints over variables within factor graphs by introducing a factor graph version of the method of Lagrange Multipliers. We show the potential of our method by presenting a full navigation stack based on factor graphs. Differently from standard navigation stacks, we can model both optimal control for local planning and localization with factor graphs, and solve the two problems using the standard ILS methodology. We validate our approach in real-world autonomous navigation scenarios, comparing it with the de facto standard navigation stack implemented in ROS. Comparative experiments show that for the application at hand our system outperforms the standard nonlinear programming solver Interior-Point Optimizer (IPOPT) in runtime, while achieving similar solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源