论文标题
现实配电网络的合奏
Ensembles of Realistic Power Distribution Networks
论文作者
论文摘要
通过引入可再生能源和智能电网技术的结合,电网正在经历重大变化。这些快速的进步需要新的模型和分析,以跟上它们引起的各种新兴现象。此类工作的主要先决条件是为电网基础架构收购构建精良且准确的网络数据集。在本文中,我们提出了一个可靠,可扩展的框架,以合成类似于给定区域的物理对应物的功率分配网络。我们使用有关相互依存的道路和建筑基础设施的公开可用信息来构建网络。与基于网络统计的先前工作相反,我们将工程和经济限制结合起来以创建网络。此外,我们还提供一个框架来创建电源分配网络的合奏,以生成给定区域的多个可能的网络实例。综合数据集由带有属性的节点组成,例如地理坐标,节点类型(居住,变压器或变电站)以及具有属性的边缘,例如几何形状,行类型(馈线,初级或次要)和行参数。为了进行验证,我们提供了生成网络与实际分销网络的详细比较。生成的数据集代表了现实的测试系统(与标准IEEE测试案例相比),网络科学家可以将其用于分析电网中的复杂事件,并对网络集合进行详细的灵敏度和统计分析。
The power grid is going through significant changes with the introduction of renewable energy sources and incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks which resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes such as geo-coordinates, type of node (residence, transformer, or substation), and edges with attributes such as geometry, type of line (feeder lines, primary or secondary) and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared to standard IEEE test cases) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks.