论文标题
SFF-DA:用于非侵入性焦虑的SPTIALTEMPORATE特征融合
SFF-DA: Sptialtemporal Feature Fusion for Detecting Anxiety Nonintrusively
论文作者
论文摘要
早期发现焦虑对于减少精神障碍患者的苦难和改善治疗结果至关重要。利用MHealth平台进行焦虑筛查,对于提高筛查效率和降低成本尤其实用。但是,现有方法的有效性受到用于捕获受试者身体和心理评估的移动设备的差异,以及在现实世界中遇到的数据质量和小样本量问题的差异。为了解决这些问题,我们提出了一个具有时空特征融合的框架,用于非触发焦虑。我们使用基于3D卷积网络和长期短期记忆(“ 3DCNN+LSTM”)的特征提取网络来融合面部行为和非接触式生理学的时空特征,从而降低了数据质量的影响。此外,我们设计了一个相似性评估策略,以解决由于样本量较小而导致模型准确性恶化的问题。我们的框架已通过现实世界和两个公共数据集的机组数据集进行了验证:勃艮第大学Franche-Comté大学心理生理学(UBFC-PHYS)数据集以及在家中的福祉和知识工作(Swell-KW)数据集的智能推理。实验结果表明,我们的框架的表现优于比较方法。
Early detection of anxiety is crucial for reducing the suffering of individuals with mental disorders and improving treatment outcomes. Utilizing an mHealth platform for anxiety screening can be particularly practical in improving screening efficiency and reducing costs. However, the effectiveness of existing methods has been hindered by differences in mobile devices used to capture subjects' physical and mental evaluations, as well as by the variability in data quality and small sample size problems encountered in real-world settings. To address these issues, we propose a framework with spatiotemporal feature fusion for detecting anxiety nonintrusively. We use a feature extraction network based on a 3D convolutional network and long short-term memory ("3DCNN+LSTM") to fuse the spatiotemporal features of facial behavior and noncontact physiology, which reduces the impact of uneven data quality. Additionally, we design a similarity assessment strategy to address the issue of deteriorating model accuracy due to small sample sizes. Our framework is validated with a crew dataset from the real world and two public datasets: the University of Burgundy Franche-Comté Psychophysiological (UBFC-Phys) dataset and the Smart Reasoning for Well-being at Home and at Work for Knowledge Work (SWELL-KW) dataset. The experimental results indicate that our framework outperforms the comparison methods.