论文标题

具有任意对称性的参数化密度运算符,以在量子状态估计中获得优势

Parameterizing density operators with arbitrary symmetries to gain advantage in quantum state estimation

论文作者

Corte, Inés, Losada, Marcelo, Tielas, Diego, Holik, Federico, Rebón, Lorena

论文摘要

在这项工作中,我们展示了如何参数化具有任意对称性的密度矩阵,知道Lie代数的发生器(如果对称组是连接的Lie组)或其基础组的发生器(以防有限)。这允许构成Maxent和Maxlik估计技术作为凸优化问题,并大大减少所涉及的函数参数数量。这意味着,除了在减少空间中进行优化的事实外,还可以减少对密度矩阵的良好估计所需的实验数据量。此外,我们运行数值实验,并将这些参数化应用于具有不同对称性的状态的量子状态估计。

In this work, we show how to parameterize a density matrix that has an arbitrary symmetry, knowing the generators of the Lie algebra (if the symmetry group is a connected Lie group) or the generators of its underlying group (in case it is finite). This allows to pose MaxEnt and MaxLik estimation techniques as convex optimization problems with a substantial reduction in the number of parameters of the function involved. This implies that, apart from a computational advantage due to the fact that the optimization is performed in a reduced space, the amount of experimental data needed for a good estimation of the density matrix can be reduced as well. In addition, we run numerical experiments and apply these parameterizations to quantum state estimation of states with different symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源