论文标题
关于HOL热传导问题的形式化
On the Formalization of the Heat Conduction Problem in HOL
论文作者
论文摘要
部分微分方程(PDE)广泛用于建模物理现象并分析许多工程和物理系统的动态行为。热方程是最著名的PDE之一,可捕获体内的温度分布和扩散。由于这些方程在各种安全至关重要的应用中的更广泛效用,例如热保护系统,因此对热传递的正式分析至关重要。在本文中,我们建议使用高阶(HOL)定理,以正式分析矩形坐标中的热传导问题。特别是,我们使用HOL Light定理供体的多变量计算理论正式将热传递作为矩形平板的一维热方程式建模。这需要对热运算符的形式化以及对其各种特性的形式验证,例如线性和缩放。此外,我们使用变量方法的分离来正式验证PDE的溶液,该溶液允许使用HOL光在各种初始和边界条件下对平板中的热传递进行建模。
Partial Differential Equations (PDEs) are widely used for modeling the physical phenomena and analyzing the dynamical behavior of many engineering and physical systems. The heat equation is one of the most well-known PDEs that captures the temperature distribution and diffusion of heat within a body. Due to the wider utility of these equations in various safety-critical applications, such as thermal protection systems, a formal analysis of the heat transfer is of utmost importance. In this paper, we propose to use higher-order-logic (HOL) theorem proving for formally analyzing the heat conduction problem in rectangular coordinates. In particular, we formally model the heat transfer as a one-dimensional heat equation for a rectangular slab using the multivariable calculus theories of the HOL Light theorem prover. This requires the formalization of the heat operator and formal verification of its various properties, such as linearity and scaling. Moreover, we use the separation of variables method for formally verifying the solution of the PDEs, which allows modeling the heat transfer in the slab under various initial and boundary conditions using HOL Light.