论文标题
无限层中可压缩粘性表面波的全局稳定性
Global stability of the compressible viscous surface waves in an infinite layer
论文作者
论文摘要
我们在本文中调查了在没有表面张力效应的情况下,可压缩粘性表面波的全球稳定性,稳态违反了雷利 - 泰勒的不稳定性,参考域是水平无限层。流体动力学由3-D重力驱动的等粒子可压缩纳维尔 - 螺旋杆方程控制。我们开发了一种数学方法,以基于拉格朗日框架建立多维压缩的纳维尔 - 斯托克斯系统的自由边界问题的全局良好性,这不需要初始数据上的非线性兼容条件。
We investigate in this paper the global stability of the compressible viscous surface waves in the absence of surface tension effect with a steady-state violating Rayleigh-Taylor instability and the reference domain being the horizontal infinite layer. The fluid dynamics are governed by the 3-D gravity-driven isentropic compressible Navier-Stokes equations. We develop a mathematical approach to establish global well-posedness of free boundary problems of the multi-dimensional compressible Navier-Stokes system based on the Lagrangian framework, which requires no nonlinear compatibility conditions on the initial data.