论文标题

低分辨率视频中的远程光绘画学:使用有效的convnets的端到端解决方案

Remote Photoplethysmography from Low Resolution videos: An end-to-end solution using Efficient ConvNets

论文作者

Ramakrishnan, Bharath, Deng, Ruijia

论文摘要

在过去的几年中,面部视频中心脏脉搏的测量已成为对研究的一种有趣的追求。这主要是由于以非侵入性的方式获得个人心率的重要性越来越重要,这对于游戏和医疗行业的应用可能非常有用。在过去的几年中,研究的另一个工具领域是深度学习的出现,并使用深度神经网络来增强任务性能。在这项工作中,我们建议使用有效的卷积网络来准确测量低分辨率面部视频的用户心率。此外,为了确保我们能够实时获得心率,我们通过修剪深度学习模型来压缩深度学习模型,从而减少其内存足迹。我们在MAHNOB数据集上基准了方法的性能,并在多种方法中比较了其性能。

Measurement of the cardiac pulse from facial video has become an interesting pursuit of research over the last few years. This is mainly due to the increasing importance of obtaining the heart rate of an individual in a non-invasive manner, which can be highly useful for applications in gaming and the medical industry. Another instrumental area of research over the past few years has been the advent of Deep Learning and using Deep Neural networks to enhance task performance. In this work, we propose to use efficient convolutional networks to accurately measure the heart rate of user from low resolution facial videos. Furthermore, to ensure that we are able to obtain the heart rate in real time, we compress the deep learning model by pruning it, thereby reducing its memory footprint. We benchmark the performance of our approach on the MAHNOB dataset and compare its performance across multiple approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源