论文标题

双重偶联在光学微腔内的非富尔顿顿人的强想象耦合产生的双重特殊点

Double exceptional points generated by the strong imaginary coupling of a non-Hermitian Hamiltonian in an optical microcavity

论文作者

Park, Kyu-Won, Kim, Jinuk, Jeong, Kabgyun

论文摘要

在非热系统的研究以及传感器和模式切换等应用中,特殊点(EPS)最近引起了很大的关注。特别是,与环绕EPS有关EPS的非平凡拓扑结构已经进行了深入研究。因此,EP生成目前是几个领域的重要问题。为了产生多个EPS,已使用Hermitian耦合使用了多个级别或复合物理系统。在这项研究中,我们通过在想象中的(主导)耦合下采用非富尔米特式哈密顿量的非热耦合来在单个微腔内产生多个EPS。由非铁耦合产生的Riemann表面的拓扑结构表现出与Hermitian耦合产生的Riemann表面不同的特征。通过包围多个EPS并使用Riemann Sphere来验证这些Riemann表面拓扑结构的特征。

Exceptional points (EPs) have recently attracted considerable attention in the study of non-Hermitian systems and in applications such as sensors and mode switching. In particular, nontrivial topological structures of EPs have been studied intensively in relation to encircling EPs. Thus, EP generation is currently an important issue in several fields. To generate multiple EPs, multiple levels or composite physical systems have been employed with Hermitian couplings. In this study, we generate multiple EPs on two-level systems in a single microcavity by adopting the non-Hermitian coupling of a non-Hermitian Hamiltonian under the imaginary (dominant) coupling. The topological structures of Riemann surfaces generated by non-Hermitian coupling exhibit features that are different from those of Riemann surfaces generated by Hermitian coupling. The features of these topological structures of Riemann surfaces were verified by encircling multiple EPs and using a Riemann sphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源