论文标题
MTCSNN:多任务临床暹罗神经网络,用于糖尿病性视网膜病严重程度预测
MTCSNN: Multi-task Clinical Siamese Neural Network for Diabetic Retinopathy Severity Prediction
论文作者
论文摘要
糖尿病性视网膜病(DR)已成为工人衰老的视力障碍的主要原因之一,在全球范围内是一个严重的问题。但是,大多数作品都忽略了标签的序数信息。在这个项目中,我们提出了一种新型设计MTCSNN,这是一种多任务临床暹罗神经网络,用于糖尿病性视网膜病变严重性预测任务。该项目的新颖性是利用标签之间的序数信息并添加新的回归任务,这可以帮助模型学习更多的歧视性特征,以嵌入细粒度的分类任务。我们对视视视视视视视视视reinamnist进行了全面的实验,将MTCSNN与Resnet-18、34、50等其他模型进行了比较。我们的结果表明,MTCSNN在测试数据集上的AUC和准确性都优于基准模型。
Diabetic Retinopathy (DR) has become one of the leading causes of vision impairment in working-aged people and is a severe problem worldwide. However, most of the works ignored the ordinal information of labels. In this project, we propose a novel design MTCSNN, a Multi-task Clinical Siamese Neural Network for Diabetic Retinopathy severity prediction task. The novelty of this project is to utilize the ordinal information among labels and add a new regression task, which can help the model learn more discriminative feature embedding for fine-grained classification tasks. We perform comprehensive experiments over the RetinaMNIST, comparing MTCSNN with other models like ResNet-18, 34, 50. Our results indicate that MTCSNN outperforms the benchmark models in terms of AUC and accuracy on the test dataset.