论文标题

$ {\ cal n} = 4 $ supersymmetric Linare $ w _ {\ infty} [λ] $ algebra的结构

The Structure of the ${\cal N}=4$ Supersymmetric Linear $W_{\infty}[λ]$ Algebra

论文作者

Ahn, Changhyun

论文摘要

For the vanishing deformation parameter $λ$, the full structure of the (anti)commutator relations in the ${\cal N}=4$ supersymmetric linear $W_{\infty}[λ=0]$ algebra is obtained for arbitrary weights $h_1$ and $h_2$ of the currents appearing on the left hand sides in these (anti)commutators. $ w_ {1+ \ infty} $代数可以通过将其他变形参数$ q $的消失限制与电流的适当收缩一起消失。对于非零$λ$,$ {\ cal n}的完整结构= 4 $ supersymmetric linear $ w _ {\ infty} [λ] $ algebra是任意权重$ h_1 $以及约束$ h_1-3 \ h_1-3 \ leq h_2 \ leq h_2 \ leq h_1+1 $ $ 1 $ 1 $ $ nterage $ h_1 $确定的。与上述$λ= 0 $ case相比,(反)换向器中右侧的其他结构在任意权重$ h_1 $和$ h_2 $的情况下出现,其中权重$ h_2 $在上述区域之外。

For the vanishing deformation parameter $λ$, the full structure of the (anti)commutator relations in the ${\cal N}=4$ supersymmetric linear $W_{\infty}[λ=0]$ algebra is obtained for arbitrary weights $h_1$ and $h_2$ of the currents appearing on the left hand sides in these (anti)commutators. The $w_{1+\infty}$ algebra can be seen from this by taking the vanishing limit of other deformation parameter $q$ with the proper contractions of the currents. For the nonzero $λ$, the complete structure of the ${\cal N}=4$ supersymmetric linear $W_{\infty}[λ]$ algebra is determined for the arbitrary weight $h_1$ together with the constraint $h_1-3 \leq h_2 \leq h_1+1$. The additional structures on the right hand sides in the (anti)commutators, compared to the above $λ=0$ case, arise for the arbitrary weights $h_1$ and $h_2$ where the weight $h_2$ is outside of above region.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源