论文标题
通过振动信号进行故障分类的基于视觉变压器的方法
A Vision Transformer-Based Approach to Bearing Fault Classification via Vibration Signals
论文作者
论文摘要
滚动轴承是旋转机械的最关键组成部分。及时识别有缺陷的轴承可能会阻止整个机械系统的故障。机械状况监测场由于机器零件的快速发展而进入了大数据阶段。当使用大量数据时,手动特征提取方法的缺点是效率低下和不准确。近年来,诸如深度学习方法之类的数据驱动方法已成功用于机械智能故障检测。卷积神经网络(CNN)主要用于早期研究中,以检测和识别轴承断层。但是,CNN模型遇到了难以管理故障时间信息的缺点,这导致缺乏分类结果。在这项研究中,使用最先进的视觉变压器(VIT)对轴承缺陷进行了分类。使用Case Western Reserve University(CWRU)实验室实验数据对轴承缺陷进行了分类。该研究还考虑了除正常轴承条件外,在0负载情况下的13种不同类型的缺陷。使用短时傅立叶变换(STFT),将振动信号转换为2D时频图像。 2D时频图像用作VIT的输入参数。该模型的总体准确度为98.8%。
Rolling bearings are the most crucial components of rotating machinery. Identifying defective bearings in a timely manner may prevent the malfunction of an entire machinery system. The mechanical condition monitoring field has entered the big data phase as a result of the fast advancement of machine parts. When working with large amounts of data, the manual feature extraction approach has the drawback of being inefficient and inaccurate. Data-driven methods like the Deep Learning method have been successfully used in recent years for mechanical intelligent fault detection. Convolutional neural networks (CNNs) were mostly used in earlier research to detect and identify bearing faults. The CNN model, however, suffers from the drawback of having trouble managing fault-time information, which results in a lack of classification results. In this study, bearing defects have been classified using a state-of-the-art Vision Transformer (ViT). Bearing defects were classified using Case Western Reserve University (CWRU) bearing failure laboratory experimental data. The research took into account 13 distinct kinds of defects under 0-load situations in addition to normal bearing conditions. Using the short-time Fourier transform (STFT), the vibration signals were converted into 2D time-frequency images. The 2D time-frequency images are used as input parameters for the ViT. The model achieved an overall accuracy of 98.8%.