论文标题
Carma:通过不可交易的业障学分,公平有效的瓶颈拥堵管理
CARMA: Fair and efficient bottleneck congestion management via non-tradable karma credits
论文作者
论文摘要
本文提出了一项名为Carma的非货币交通需求管理计划,作为早晨通勤交通拥堵的公平解决方案。我们认为在所需的到达时间和价值(fot)的单一瓶颈中旅行的异质通勤者。我们通过允许每天动态变化(例如,根据行程目的和紧迫性)的动态变化,而不是作为每个人的静态特征,从而考虑了一个广义的投票概念。在我们的Carma计划中,瓶颈被分为一条快车道,该车道保持自由流动和慢速车道,并受到拥挤的影响。我们引入了一个名为Karma的不可交易的移动性信用,该信用量被通勤者用于竞标进入快车道。速度超过或不参加CARMA计划的通勤者使用慢速车道。每天结束时,从竞标者那里收集的业力被重新分配,并且该过程每天重复。我们将Carma下的集体通勤行为模拟为动态人口游戏(DPG),其中保证存在固定的NASH平衡(SNE)。与现有的货币计划不同,在分析和数值上,Carma都可以在分析和数字上表现出a)关于异质收入类别的公平交通分配,b)对于没有政策干预,长期平均旅行障碍的长期平均旅行分离有了很大的改善。通过广泛的数值分析,我们表明Carma能够保留与统一的业力重新分配下的最佳货币收费方案相同的拥塞减少,甚至在精心设计的重新分配方案下甚至超过了损失。我们还强调了Carma的隐私权特征,即它可以量身定制通勤者的私人偏好的能力,而无需集中收集信息。
This paper proposes a non-monetary traffic demand management scheme, named CARMA, as a fair solution to the morning commute congestion. We consider heterogeneous commuters traveling through a single bottleneck that differ in both the desired arrival time and Value of Time (VOT). We consider a generalized notion of VOT by allowing it to vary dynamically on each day (e.g., according to trip purpose and urgency), rather than being a static characteristic of each individual. In our CARMA scheme, the bottleneck is divided into a fast lane that is kept in free flow and a slow lane that is subject to congestion. We introduce a non-tradable mobility credit, named karma, that is used by commuters to bid for access to the fast lane. Commuters who get outbid or do not participate in the CARMA scheme instead use the slow lane. At the end of each day, karma collected from the bidders is redistributed, and the process repeats day by day. We model the collective commuter behaviors under CARMA as a Dynamic Population Game (DPG), in which a Stationary Nash Equilibrium (SNE) is guaranteed to exist. Unlike existing monetary schemes, CARMA is demonstrated, both analytically and numerically, to achieve a) an equitable traffic assignment with respect to heterogeneous income classes and b) a strong Pareto improvement in the long-term average travel disutility with respect to no policy intervention. With extensive numerical analysis, we show that CARMA is able to retain the same congestion reduction as an optimal monetary tolling scheme under uniform karma redistribution and even outperform tolling under a well-designed redistribution scheme. We also highlight the privacy-preserving feature of CARMA, i.e., its ability to tailor to the private preferences of commuters without centrally collecting the information.