论文标题
DHSA:有效的双态同型安全聚合用于联合学习
DHSA: Efficient Doubly Homomorphic Secure Aggregation for Cross-silo Federated Learning
论文作者
论文摘要
安全汇总广泛用于水平联合学习(FL),以防止当汇总数据所有者的模型更新时培训数据的泄漏。基于同态加密(HE)的安全汇总协议已用于工业跨境系统,这是与对隐私敏感组织(例如财务或医疗)涉及的设置之一,对隐私安全提出了更严格的要求。但是,现有的基于HE的解决方案在效率和安全保证方面存在限制,以防止在没有信托的第三方的情况下对对手进行勾结。 本文提出了一种有效的双形同型安全聚合(DHSA)方案,用于交叉硅FL,该方案利用多键同型加密(MKHE)和种子同型Pseudorandom andom发电机(SHPRG)作为加密原始素。 MKHE的应用提供了强大的安全保证,可抵抗多达$ N-2 $的参与汇总者,无需TTP。为了减轻MKHE的庞大计算和通信成本,我们利用SHPRG的同构属性来替换SHPRG的计算友好蒙版生成的大多数MKHE计算,同时保留了安全性。总体而言,最终的方案满足了典型的跨性别场景的严格安全要求,同时为实用使用提供了高度的计算和沟通效率。我们在实验上证明了我们的计划使基于最新的安全汇总的加速升至20美元$ \ times $,并将流量量减少到大约1.5 $ \ times $ \ times $ $ \ times $ $ \ times $ \ times $ \ times $ \ times $ \ times。
Secure aggregation is widely used in horizontal Federated Learning (FL), to prevent leakage of training data when model updates from data owners are aggregated. Secure aggregation protocols based on Homomorphic Encryption (HE) have been utilized in industrial cross-silo FL systems, one of the settings involved with privacy-sensitive organizations such as financial or medical, presenting more stringent requirements on privacy security. However, existing HE-based solutions have limitations in efficiency and security guarantees against colluding adversaries without a Trust Third Party. This paper proposes an efficient Doubly Homomorphic Secure Aggregation (DHSA) scheme for cross-silo FL, which utilizes multi-key Homomorphic Encryption (MKHE) and seed homomorphic pseudorandom generator (SHPRG) as cryptographic primitives. The application of MKHE provides strong security guarantees against up to $N-2$ participates colluding with the aggregator, with no TTP required. To mitigate the large computation and communication cost of MKHE, we leverage the homomorphic property of SHPRG to replace the majority of MKHE computation by computationally-friendly mask generation from SHPRG, while preserving the security. Overall, the resulting scheme satisfies the stringent security requirements of typical cross-silo FL scenarios, at the same time providing high computation and communication efficiency for practical usage. We experimentally demonstrate our scheme brings a speedup to 20$\times$ over the state-of-the-art HE-based secure aggregation, and reduces the traffic volume to approximately 1.5$\times$ inflation over the plain learning setting.