论文标题
罗兰:动态图的图形学习框架
ROLAND: Graph Learning Framework for Dynamic Graphs
论文作者
论文摘要
图形神经网络(GNN)已成功应用于许多现实世界静态图。但是,由于模型设计,评估设置和训练策略的局限性,静态图的成功尚未完全转化为动态图。具体而言,现有的动态GNN并不包含静态GNN的最新设计,从而限制了它们的性能。动态GNN的当前评估设置不能完全反映动态图的不断发展的性质。最后,用于动态GNN的常用训练方法是不可扩展的。在这里,我们提出了Roland,这是现实世界动态图的有效图表学习框架。 Roland框架以此为核心,可以帮助研究人员轻松地将任何静态GNN重新用于动态图。我们的见解是将不同GNN层的节点嵌入视为分层节点状态,然后随着时间的推移将它们反复更新。然后,我们为动态图引入了一个实时更高的评估设置,该设置模仿了现实世界中的用例,其中GNN正在做出预测并在滚动基础上进行更新。最后,我们通过增量训练和元学习提出了一种可扩展有效的训练方法,用于动态GNN。我们在未来链接预测任务上进行了八个不同的动态图数据集的实验。在三个数据集的标准评估设置下,使用Roland框架建立的模型平均相对平均平均值等级(MRR)的相对平均值(MRR)改进。我们发现对较大数据集的最先进的基线经历了不可存储的错误,而Roland可以轻松地扩展到5600万个边缘的动态图。在使用ROLAND训练策略重新实施这些基准线后,Roland模型平均相对于基线相对相对改善了15.5%。
Graph Neural Networks (GNNs) have been successfully applied to many real-world static graphs. However, the success of static graphs has not fully translated to dynamic graphs due to the limitations in model design, evaluation settings, and training strategies. Concretely, existing dynamic GNNs do not incorporate state-of-the-art designs from static GNNs, which limits their performance. Current evaluation settings for dynamic GNNs do not fully reflect the evolving nature of dynamic graphs. Finally, commonly used training methods for dynamic GNNs are not scalable. Here we propose ROLAND, an effective graph representation learning framework for real-world dynamic graphs. At its core, the ROLAND framework can help researchers easily repurpose any static GNN to dynamic graphs. Our insight is to view the node embeddings at different GNN layers as hierarchical node states and then recurrently update them over time. We then introduce a live-update evaluation setting for dynamic graphs that mimics real-world use cases, where GNNs are making predictions and being updated on a rolling basis. Finally, we propose a scalable and efficient training approach for dynamic GNNs via incremental training and meta-learning. We conduct experiments over eight different dynamic graph datasets on future link prediction tasks. Models built using the ROLAND framework achieve on average 62.7% relative mean reciprocal rank (MRR) improvement over state-of-the-art baselines under the standard evaluation settings on three datasets. We find state-of-the-art baselines experience out-of-memory errors for larger datasets, while ROLAND can easily scale to dynamic graphs with 56 million edges. After re-implementing these baselines using the ROLAND training strategy, ROLAND models still achieve on average 15.5% relative MRR improvement over the baselines.