论文标题

图形的措施理论表示

A measure-theoretic representation of graphs

论文作者

Mulas, Raffaella, Zucal, Giulio

论文摘要

受图形极限理论中的动作收敛概念的启发,我们引入了矩阵的测量理论表示,并使用它来定义矩阵空间上的伪金属的新概念。此外,我们表明,这种伪金属是图形的邻接或拉普拉斯矩阵子空间上的度量标准。因此,特别是,我们获得了图形同构类别的度量。此外,我们研究了图表的某些特性如何在此度量表示中转化,并展示了我们的分析如何有助于对图形的动作收敛的更简单理解。

Inspired by the notion of action convergence in graph limit theory, we introduce a measure-theoretic representation of matrices, and we use it to define a new notion of pseudo-metric on the space of matrices. Moreover, we show that such pseudo-metric is a metric on the subspace of adjacency or Laplacian matrices for graphs. Hence, in particular, we obtain a metric for isomorphism classes of graphs. Additionally, we study how some properties of graphs translate in this measure representation, and we show how our analysis contributes to a simpler understanding of action convergence of graphops.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源