论文标题
固体中狄拉克电子的量子传输和磁性
Quantum Transport and Magnetism of Dirac Electrons in Solids
论文作者
论文摘要
相对论的狄拉克方程涵盖了固体中电子现象的基本原理,因此有效地描述了拓扑绝缘子的电子状态,例如bi $ _2 $ _2 $ se $ _3 $和bi $ _2 $ _2 $ _3 $ _3 $。拓扑绝缘子具有无间隙的表面状态,此外,磁性掺杂和产生的铁磁有序断裂时间反转对称性,以实现量子异常的霍尔和Chern绝缘子。在这里,我们专注于批量,并研究狄拉克电子电子和磁性的相互耦合。没有载体掺杂,螺旋磁序会通过自旋轨道耦合引起铁电偏振。在掺杂的金属状态下,各向异性磁化剂无均匀的磁化产生。我们发现电流会诱导均匀的磁化强度,而相反,振荡的磁性顺序会诱导电流。我们的模型提供了所有这些现象的连贯和统一的描述。电气和磁性的相互控制证明了抗铁磁旋转的实施。我们还讨论了化学计量磁性拓扑绝缘子MNBI $ _2 $ TE $ _4 $。
The relativistic Dirac equation covers the fundamentals of electronic phenomena in solids and as such it effectively describes the electronic states of the topological insulators like Bi$_2$Se$_3$ and Bi$_2$Te$_3$. Topological insulators feature gapless surface states and, moreover, magnetic doping and resultant ferromagnetic ordering break time-reversal symmetry to realize quantum anomalous Hall and Chern insulators. Here we focus on the bulk and investigate the mutual coupling of electronic and magnetic properties of Dirac electrons. Without carrier doping, spiral magnetic orders cause a ferroelectric polarization through the spin-orbit coupling. In a doped metallic state, the anisotropic magnetoresistance arises without uniform magnetization. We find that electric current induces uniform magnetization and conversely an oscillating magnetic order induces electric current. Our model provides a coherent and unified description of all those phenomena. The mutual control of electric and magnetic properties demonstrates implementations of antiferromagnetic spintronics. We also discuss the stoichiometric magnetic topological insulator MnBi$_2$Te$_4$.