论文标题
面向任务的视频编码:调查
Task Oriented Video Coding: A Survey
论文作者
论文摘要
视频编码技术已不断改进,以更高的分辨率以更高的压缩比。但是,最先进的视频编码标准(例如H.265/HEVC和多功能视频编码)仍在设计中设计了压缩视频,将由人类观看。随着深度神经网络在解决计算机视觉任务中的巨大进步和成熟,越来越多的视频通过无人参与的深度神经网络直接分析。当计算机视觉应用程序使用压缩视频时,这种传统的视频编码标准设计并不是最佳的。尽管人类视觉系统对具有高对比度的内容一直敏感,但像素对计算机视觉算法的影响是由特定的计算机视觉任务驱动的。在本文中,我们探讨并总结了计算机视觉任务的最新进度,以视频编码和新兴的视频编码标准,机器的视频编码。
Video coding technology has been continuously improved for higher compression ratio with higher resolution. However, the state-of-the-art video coding standards, such as H.265/HEVC and Versatile Video Coding, are still designed with the assumption the compressed video will be watched by humans. With the tremendous advance and maturation of deep neural networks in solving computer vision tasks, more and more videos are directly analyzed by deep neural networks without humans' involvement. Such a conventional design for video coding standard is not optimal when the compressed video is used by computer vision applications. While the human visual system is consistently sensitive to the content with high contrast, the impact of pixels on computer vision algorithms is driven by specific computer vision tasks. In this paper, we explore and summarize recent progress on computer vision task oriented video coding and emerging video coding standard, Video Coding for Machines.