论文标题

(3+1)D拓扑阶段中的Codimension-2缺陷和较高的对称性

Codimension-2 defects and higher symmetries in (3+1)D topological phases

论文作者

Barkeshli, Maissam, Chen, Yu-An, Huang, Sheng-Jie, Kobayashi, Ryohei, Tantivasadakarn, Nathanan, Zhu, Guanyu

论文摘要

(3+1)D物质的拓扑阶段可以容纳一类Condimension-1、2和3的广泛的非平凡拓扑缺陷,其中众所周知的点电荷和通量环是特殊情况。这些缺陷的完整代数结构定义了较高的类别,可以看作是出现的更高对称性。这在物质阶段的分类和拓扑量子误差校正代码中可能易于断层的逻辑操作都起着至关重要的作用。在本文中,我们从不同的角度研究了这种更高的编码缺陷的几个例子。我们主要研究一类可演化的Codimension-2拓扑缺陷,我们称之为扭曲字符串。我们为扭曲字符串提供了许多一般构造,以衡量较低的尺寸可逆阶段,层构造和凝结缺陷。我们在$ \ mathbb {z} _2 $ gauge理论的背景下研究一些特殊示例,并在$ \ mathbb {z} _2 \ times \ times \ times \ times \ mathbb {z} _2 _2 $ GAUGE理论带有玻色子指控,也是基于非 - 除了d_ d_ $ dih $ diheDihededral($)的$ d_nnnnnne $ d_nnnnnnnne $ d_nnnnnnnection。扭曲字符串与Abelian Flux环之间的交集Abelian Point指控,该电荷定义了$ H^4 $的同胞学类,该类别表征了拓扑顺序的基础3组对称性的一部分。涉及三组对称性背景量规场的方程已针对各种情况明确写下来。我们还研究了与非亚洲通量环相互作用的扭曲字符串的示例(定义了不可矛盾的高对称性的一部分),不可逆转的Codimension-2缺陷的示例,以及与Codimension-2缺陷1的相互作用的示例。我们还找到了(3+1)d $ a_6 $量规理论中几何而不是完全拓扑的扭曲字符串的示例。

(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of $\mathbb{Z}_2$ gauge theory with fermionic charges, in $\mathbb{Z}_2 \times \mathbb{Z}_2$ gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ($D_n$) and alternating ($A_6$) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an $H^4$ cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D $A_6$ gauge theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源