论文标题
Semaug:通过语言接地的对象检测的语义上有意义的图像增强图像
SemAug: Semantically Meaningful Image Augmentations for Object Detection Through Language Grounding
论文作者
论文摘要
数据增强是改善深神经网络概括的必不可少的技术。大多数现有的图像域增强剂要么依赖几何和结构变换,要么施加不同类型的光度扭曲。在本文中,我们提出了一种有效的技术来通过将上下文有意义的知识注入场景中。我们通过语言接地(Semaug)进行对象检测的语义上有意义的图像扩展的方法首先计算可以将其放置在图像中相关位置的语义上适当的新对象(问题和位置)。然后,它将这些对象嵌入其相关目标位置,从而促进对象实例分布的多样性。我们的方法允许介绍培训集中甚至可能不存在的新对象实例和类别。此外,它不需要培训上下文网络的额外开销,因此可以轻松地将其添加到现有的架构中。我们全面的评估集表明,所提出的方法在改善概括方面非常有效,而开销可以忽略不计。特别是,对于广泛的模型体系结构,我们的方法分别达到了〜2-4%和〜1-2%的地图改进,分别在Pascal VOC和COCO数据集上进行对象检测任务。
Data augmentation is an essential technique in improving the generalization of deep neural networks. The majority of existing image-domain augmentations either rely on geometric and structural transformations, or apply different kinds of photometric distortions. In this paper, we propose an effective technique for image augmentation by injecting contextually meaningful knowledge into the scenes. Our method of semantically meaningful image augmentation for object detection via language grounding, SemAug, starts by calculating semantically appropriate new objects that can be placed into relevant locations in the image (the what and where problems). Then it embeds these objects into their relevant target locations, thereby promoting diversity of object instance distribution. Our method allows for introducing new object instances and categories that may not even exist in the training set. Furthermore, it does not require the additional overhead of training a context network, so it can be easily added to existing architectures. Our comprehensive set of evaluations showed that the proposed method is very effective in improving the generalization, while the overhead is negligible. In particular, for a wide range of model architectures, our method achieved ~2-4% and ~1-2% mAP improvements for the task of object detection on the Pascal VOC and COCO datasets, respectively.