论文标题
喂食:用于个性化知识图的探索性搜索的多态性镜头
FeedLens: Polymorphic Lenses for Personalizing Exploratory Search over Knowledge Graphs
论文作者
论文摘要
知识图的巨大规模和开放性的性质(kgs)使对用户的认知要求探索性搜索。我们介绍了一种新技术,即多态性镜头,该技术通过从基于KG基于KG的系统维护的现有偏好模型中获得的新杠杆来改善对kg的探索性搜索。该方法基于一个简单但有力的观察:在公斤中,可以重新定位偏好模型,不仅推荐单个基础实体类型的实体(例如,科学文献中的论文,电子商务kg中的产品,电子商务kg中的产品),还建议所有其他类型(例如,所有其他类型)(例如,作者,会议,会议,机构;卖家;卖家,购买者,购买者)。我们在一个新型系统中实现了我们的技术,该系统是基于语义学者建造的,该系统是一种用于浏览科学文献KG的生产系统。饲养者重用语义学者的现有偏好模型 - 人们精心策划的研究提要 - 作为探索性搜索的镜头。语义学者用户可以为不同的感兴趣主题策划多个供稿/镜头,例如,以人为本的AI,另一个用于文档嵌入。尽管这些镜头是根据论文定义的,但馈线将它们重新填充以指导作者,机构,场地等。我们的系统设计是基于预期用户通过两项试点调查的反馈(分别n = 17和n = 13)。我们通过第三个(受试者内)用户研究(n = 15)比较馈线和语义学者,并发现馈线增加了用户的参与度,同时减少了完成短期文献审查任务所需的认知工作。我们的定性结果还强调了人们对饲养者实现的更有效的探索性搜索经验的偏爱。
The vast scale and open-ended nature of knowledge graphs (KGs) make exploratory search over them cognitively demanding for users. We introduce a new technique, polymorphic lenses, that improves exploratory search over a KG by obtaining new leverage from the existing preference models that KG-based systems maintain for recommending content. The approach is based on a simple but powerful observation: in a KG, preference models can be re-targeted to recommend not only entities of a single base entity type (e.g., papers in the scientific literature KG, products in an e-commerce KG), but also all other types (e.g., authors, conferences, institutions; sellers, buyers). We implement our technique in a novel system, FeedLens, which is built over Semantic Scholar, a production system for navigating the scientific literature KG. FeedLens reuses the existing preference models on Semantic Scholar -- people's curated research feeds -- as lenses for exploratory search. Semantic Scholar users can curate multiple feeds/lenses for different topics of interest, e.g., one for human-centered AI and another for document embeddings. Although these lenses are defined in terms of papers, FeedLens re-purposes them to also guide search over authors, institutions, venues, etc. Our system design is based on feedback from intended users via two pilot surveys (n=17 and n=13, respectively). We compare FeedLens and Semantic Scholar via a third (within-subjects) user study (n=15) and find that FeedLens increases user engagement while reducing the cognitive effort required to complete a short literature review task. Our qualitative results also highlight people's preference for this more effective exploratory search experience enabled by FeedLens.