论文标题

依赖性任务在协作无人机网络中的卸载和通信资源分配:一种元武器方法

Dependency Tasks Offloading and Communication Resource Allocation in Collaborative UAVs Networks: A Meta-Heuristic Approach

论文作者

Nguyen, Loc X., Tun, Yan Kyaw, Dang, Tri Nguyen, Park, Yu Min, Han, Zhu, Hong, Choong Seon

论文摘要

近年来,研究人员已利用无人驾驶飞机(UAV)辅助移动边缘计算系统,作为一种有希望的解决方案,可为地面基础设施覆盖范围以外的移动用户提供计算服务。但是,由于其机载服务器和电池寿命的计算能力有限,因此,对于独立的MEC无人机而言,它仍然具有挑战性,以满足许多移动用户的计算要求。因此,我们在无人机之间提出了一个协作计划,以便无人机可以与闲置的无人机共享工作量。此外,当前的任务卸载策略经常忽略任务拓扑,这可能会导致性能差甚至是系统故障。为了解决这个问题,我们考虑卸载由一组子任务组成的任务,每个子任务都对其他子任务的依赖性,这在现实世界中是实用的。具有依赖关系的子任务需要等待前面的子任务的产生信号,然后再执行。这种机制对卸载策略有严重影响。然后,我们制定了一个优化问题,以最大程度地降低用户经历的平均潜伏期,从而共同控制依赖任务的卸载决策并分配无人机的通信资源。配制的问题似乎是NP固定的,无法在多项式时间内解决。因此,我们将问题分为两个子问题:卸载决策问题和通信资源分配问题。然后,提出了一种元密度方法,以找到任务卸载问题的亚最佳解决方案,而通信资源分配问题是通过使用convex优化解决的。最后,我们进行了实质性的仿真实验,结果表明,与其他基准方案相比,提出的卸载技术有效地最大程度地减少了用户的平均潜伏度。

In recent years, unmanned aerial vehicles (UAVs) assisted mobile edge computing systems have been exploited by researchers as a promising solution for providing computation services to mobile users outside of terrestrial infrastructure coverage. However, it remains challenging for the standalone MEC-enabled UAVs in order to meet the computation requirement of numerous mobile users due to the limited computation capacity of their onboard servers and battery lives. Therefore, we propose a collaborative scheme among UAVs so that UAVs can share the workload with idle UAVs. Moreover, current task offloading strategies frequently overlook task topology, which may result in poor performance or even system failure. To address the problem, we consider offloading tasks consisting of a set of sub-tasks, and each sub-task has dependencies on other sub-tasks, which is practical in the real world. Sub-tasks with dependencies need to wait for the resulting signal from preceding sub-tasks before being executed. This mechanism has serious effects on the offloading strategy. Then, we formulate an optimization problem to minimize the average latency experienced by users by jointly controlling the offloading decision for dependent tasks and allocating the communication resources of UAVs. The formulated problem appears to be NP-hard and cannot be solved in polynomial time. Therefore, we divide the problem into two sub-problems: the offloading decision problem and the communication resource allocation problem. Then a meta-heuristic method is proposed to find the sub-optimal solution of the task offloading problem, while the communication resource allocation problem is solved by using convex optimization. Finally, we perform substantial simulation experiments, and the result shows that the proposed offloading technique effectively minimizes the average latency of users, compared with other benchmark schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源