论文标题

大规模最小化伪造横坐标

Large-Scale Minimization of the Pseudospectral Abscissa

论文作者

Aliyev, Nicat, Mengi, Emre

论文摘要

这项工作涉及矩阵值函数的伪横梁的最小化取决于参数。该问题是由具有优化参数的线性控制系统的稳健稳定性和瞬态行为考虑的动机。我们描述了一个子空间程序,以应对矩阵值函数大小时应对设置。提出的子空间程序通过将矩阵值函数限制为小子空间来解决一系列减少问题的顺序,该子空间的尺寸逐渐增加。它具有理想的特征,例如衰变在减少问题的最小化器中表现出的超线性收敛。用数学术语来说,我们认为的问题是一个大规模的非coNVEX Minimax特征值优化问题,因此特征值函数出现在内部最大化问题的约束中。在约束中使用特征值函数的最小特征值优化问题设计和分析一个子空间框架需要特殊处理,以利用Lagrangian和Dual变量。在最小化伪造的横坐标比最大化不稳定性的距离或最小化$ \ Mathcal {h} _ \ infty $ norm;优化的伪横梁提供了有关最差案例瞬态增长的定量信息,以及对参数值的初始猜测以优化伪型横坐标可以是任意的,与优化不稳定的距离和$ \ \ \级数学{h} _ \ indcal {h} _ \ infty $ norm的距离不同,这通常会造成初始猜测。

This work concerns the minimization of the pseudospectral abscissa of a matrix-valued function dependent on parameters analytically. The problem is motivated by robust stability and transient behavior considerations for a linear control system that has optimization parameters. We describe a subspace procedure to cope with the setting when the matrix-valued function is of large size. The proposed subspace procedure solves a sequence of reduced problems obtained by restricting the matrix-valued function to small subspaces, whose dimensions increase gradually. It possesses desirable features such as a superlinear convergence exhibited by the decay in the errors of the minimizers of the reduced problems. In mathematical terms, the problem we consider is a large-scale nonconvex minimax eigenvalue optimization problem such that the eigenvalue function appears in the constraint of the inner maximization problem. Devising and analyzing a subspace framework for the minimax eigenvalue optimization problem at hand with the eigenvalue function in the constraint require special treatment that makes use of a Lagrangian and dual variables. There are notable advantages in minimizing the pseudospectral abscissa over maximizing the distance to instability or minimizing the $\mathcal{H}_\infty$ norm; the optimized pseudospectral abscissa provides quantitative information about the worst-case transient growth, and the initial guesses for the parameter values to optimize the pseudospectral abscissa can be arbitrary, unlike the case to optimize the distance to instability and $\mathcal{H}_\infty$ norm that would normally require initial guesses yielding asymptotically stable systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源