论文标题
使用神经网络内核快速发现石墨烯纳米晶体
Rapid Discovery of Graphene Nanocrystals Using DFT and Bayesian Optimization with Neural Network Kernel
论文作者
论文摘要
密度功能理论(DFT)是一种强大的计算方法,用于获得材料的物理和化学特性。在材料发现框架中,通常有必要筛选一个较大且高维的化学空间以找到具有所需特性的材料。但是,由于其较高的计算成本,网格搜索大型化学空间的效率很低。我们提出了一种使用人工神经网络内核的贝叶斯优化(BO)的方法,以实现智能搜索。该方法利用BO算法(在有限的DFT结果中训练的神经网络)决定了在随后的迭代中探索的化学空间最有希望的区域。这种方法旨在发现具有目标特性的材料,同时最大程度地减少所需的DFT计算数量。为了证明这种方法的有效性,我们研究了63个掺杂的石墨烯量子点(GQD),尺寸为1到2 nm,以找到具有最高光吸光度的结构。我们仅使用时间依赖性的DFT(TDDFT)12次,我们通过使用神经网络内核的BO算法来大大降低计算成本,约为全网格搜索所需的20%。考虑到单个GQD的TDDFT计算需要在高性能计算节点上大约半天的墙壁时间,因此这种降低是实质性的。我们的方法可以推广到具有高维和大化学空间的新药,化学药品,晶体和合金的发现,为材料科学中的各种应用提供了可扩展的解决方案。
Density functional theory (DFT) is a powerful computational method used to obtain physical and chemical properties of materials. In the materials discovery framework, it is often necessary to virtually screen a large and high-dimensional chemical space to find materials with desired properties. However, grid searching a large chemical space with DFT is inefficient due to its high computational cost. We propose an approach utilizing Bayesian optimization (BO) with an artificial neural network kernel to enable smart search. This method leverages the BO algorithm, where the neural network, trained on a limited number of DFT results, determines the most promising regions of the chemical space to explore in subsequent iterations. This approach aims to discover materials with target properties while minimizing the number of DFT calculations required. To demonstrate the effectiveness of this method, we investigated 63 doped graphene quantum dots (GQDs) with sizes ranging from 1 to 2 nm to find the structure with the highest light absorbance. Using time-dependent DFT (TDDFT) only 12 times, we achieved a significant reduction in computational cost, approximately 20% of what would be required for a full grid search, by employing the BO algorithm with a neural network kernel. Considering that TDDFT calculations for a single GQD require about half a day of wall time on high-performance computing nodes, this reduction is substantial. Our approach can be generalized to the discovery of new drugs, chemicals, crystals, and alloys with high-dimensional and large chemical spaces, offering a scalable solution for various applications in materials science.