论文标题

Osband的识别功能原则

Osband's Principle for Identification Functions

论文作者

Dimitriadis, Timo, Fissler, Tobias, Ziegel, Johanna

论文摘要

给定关注的统计函数(例如平均值或中位数),(严格)识别函数的期望值为(仅在)真实功能值中为零。识别功能是预测验证,统计估计和动态建模的关键对象。对于可能感兴趣的矢量值功能,我们完全表征了受轻度规律性条件的(严格)识别功能的类别。

Given a statistical functional of interest such as the mean or median, a (strict) identification function is zero in expectation at (and only at) the true functional value. Identification functions are key objects in forecast validation, statistical estimation and dynamic modelling. For a possibly vector-valued functional of interest, we fully characterise the class of (strict) identification functions subject to mild regularity conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源