论文标题

在Schrödingerist量子热力学上

On Schrödingerist Quantum Thermodynamics

论文作者

De Carlo, Leonardo, Wick, W. David

论文摘要

从Schrödingerism的角度来看,仅波函数的哲学,热力学必须根据波函数的集合而不是经典的粒子构型或Copenaghen量子力学的“发现”值进行重塑。概括了历史序列,我们在这里考虑了几种经典的磁体模型,这些模型可以表现出相位过渡到低温磁化状态。我们制定了包括“schrödingerist量子iSing模型”(smim),“schrödingeristpurie-weiss模型”(SCWM)等的波功能类似物。我们表明,具有自由边界条件和可区分的“自旋”的smim没有有限的温度相变,我们将其归因于熵淹没能量。同样,SCWM甚至假设在波函数中具有交换对称性(在这种情况下,分析论点并不完全令人满意,我们通过计算机分析帮助了自己)。但是,具有“波函数能量”的变体模型(在先前有关Schrödingerism和测量问题的通信中引入)确实具有相位过渡到磁性状态。这三个结果一起表明,当且仅当我们考虑通过能量保护通过无法区分的颗粒并阻止宏观分散体(即宏观叠加)时,才会出现大波函数旋转链中的磁化。我们的原理技术涉及将问题转换为概率理论的问题,然后应用大偏差的结果,尤其是Gärtner-ellis定理。最后,我们在选择量子热力学合奏时讨论了吉布斯与玻尔兹曼/爱因斯坦熵以及开放问题。 Physh:量子理论,量子统计力学,大偏差和罕见的事件统计。 https://github.com/leodecarlo/computing-large-deviation-deviation-functionals-of-not-not-distriped-distribed-distripent-独立random-variables

From the point of view of Schrödingerism, a wavefunction-only philosophy, thermodynamics must be recast in terms of an ensemble of wavefunctions, rather than classical particle configurations or "found" values of Copenaghen Quantum Mechanics. Recapitulating the historical sequence, we consider here several models of magnets that classically can exhibit a phase transition to a low-temperature magnetized state. We formulate wavefunction analogues including a "Schrödingerist QUantum Ising Model" (SQUIM), a "Schrödingerist Curie-Weiss Model"(SCWM), and others. We show that the SQUIM with free boundary conditions and distinguishable "spins" has no finite-temperature phase transition, which we attribute to entropy swamping energy. The SCWM likewise, even assuming exchange symmetry in the wavefunction (in this case the analytical argument is not totally satisfactory and we helped ourself with a computer analysis). But a variant model with "Wavefunction Energy" (introduced in prior communications about Schrödingerism and the Measurement Problem) does have a phase transition to a magnetised state. The three results together suggest that magnetization in large wavefunction spin chains appears if and only if we consider indistinguishable particles and block macroscopic dispersion (i.e. macroscopic superpositions) by energy conservation. Our principle technique involves transforming the problem to one in probability theory, then applying results from Large Deviations, particularly the Gärtner-Ellis Theorem. Finally, we discuss Gibbs vs. Boltzmann/Einstein entropy in the choice of the quantum thermodynamic ensemble, as well as open problems. PhySH: quantum theory, quantum statistical mechanics, large deviation & rare event statistics. https://github.com/leodecarlo/Computing-Large-Deviation-Functionals-of-not-identically-distributed-independent-random-variables

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源