论文标题
基于得分的扩散符合退火的重要性抽样
Score-Based Diffusion meets Annealed Importance Sampling
论文作者
论文摘要
引入二十年来,退火重要性采样(AIS)仍然是边际可能性估计的最有效方法之一。它依赖于一系列分布序列在可聊天的初始分布与利益的目标分布之间插值,我们从大约使用非均匀的马尔可夫链中模拟了分布分布。为了获得对边际可能性的重要性采样估计,AIS引入了扩展的目标分布,以重新持续马尔可夫链提案。尽管已经大力致力于改善AIS使用的提案分布,但一个不足的问题是AIS使用方便但次优的扩展目标分布。我们在这里利用基于分数的生成建模(SGM)的最新进展来近似最佳的扩展目标分布最小化与Langevin和Hamiltonian动力学离散化的AIS建议的边际似然估计的方差。我们在许多合成基准分布和变异自动编码器上演示了这些新颖的,可区分的AIS程序。
More than twenty years after its introduction, Annealed Importance Sampling (AIS) remains one of the most effective methods for marginal likelihood estimation. It relies on a sequence of distributions interpolating between a tractable initial distribution and the target distribution of interest which we simulate from approximately using a non-homogeneous Markov chain. To obtain an importance sampling estimate of the marginal likelihood, AIS introduces an extended target distribution to reweight the Markov chain proposal. While much effort has been devoted to improving the proposal distribution used by AIS, an underappreciated issue is that AIS uses a convenient but suboptimal extended target distribution. We here leverage recent progress in score-based generative modeling (SGM) to approximate the optimal extended target distribution minimizing the variance of the marginal likelihood estimate for AIS proposals corresponding to the discretization of Langevin and Hamiltonian dynamics. We demonstrate these novel, differentiable, AIS procedures on a number of synthetic benchmark distributions and variational auto-encoders.