论文标题

带有自动编码的变分贝叶的训练潜在变量模型:教程

Training Latent Variable Models with Auto-encoding Variational Bayes: A Tutorial

论文作者

Zhi-Han, Yang

论文摘要

自动编码变化贝叶斯(AEVB)是一种用于拟合潜在变量模型(无监督学习的有前途的方向)的强大而通用的算法,并且是训练变量自动编码器(VAE)的众所周知的。在本教程中,我们专注于从经典期望最大化(EM)算法中激励AEVB,而不是确定性自动编码器。尽管自然而有些不言而喻,但在最近的深度学习文献中并未强调EM与AEVB之间的联系,我们认为强调这种联系可以改善社区对AEVB的理解。特别是,我们发现(1)优化证据相对于推理参数的近似E-step和(2)优化ELBO相对于生成参数的近似M-step,优化证据下限(ELBO);然后,与AEVB中的同时进行同时进行,然后同时拧紧并推动Elbo。我们讨论如何将近似E-Step解释为执行变异推断。详细讨论了重要的概念,例如摊销和修复技巧。最后,我们从划痕中得出了非深度和几种深层变量模型的AEVB训练程序,包括VAE,条件VAE,高斯混合物VAE和变异RNN。我们希望读者能够将AEVB认识为一种通用算法,可用于拟合广泛的潜在变量模型(不仅是VAE),并将AEVB应用于在自己的研究领域中出现的此类模型。所有纳入型号的Pytorch代码均可公开使用。

Auto-encoding Variational Bayes (AEVB) is a powerful and general algorithm for fitting latent variable models (a promising direction for unsupervised learning), and is well-known for training the Variational Auto-Encoder (VAE). In this tutorial, we focus on motivating AEVB from the classic Expectation Maximization (EM) algorithm, as opposed to from deterministic auto-encoders. Though natural and somewhat self-evident, the connection between EM and AEVB is not emphasized in the recent deep learning literature, and we believe that emphasizing this connection can improve the community's understanding of AEVB. In particular, we find it especially helpful to view (1) optimizing the evidence lower bound (ELBO) with respect to inference parameters as approximate E-step and (2) optimizing ELBO with respect to generative parameters as approximate M-step; doing both simultaneously as in AEVB is then simply tightening and pushing up ELBO at the same time. We discuss how approximate E-step can be interpreted as performing variational inference. Important concepts such as amortization and the reparametrization trick are discussed in great detail. Finally, we derive from scratch the AEVB training procedures of a non-deep and several deep latent variable models, including VAE, Conditional VAE, Gaussian Mixture VAE and Variational RNN. It is our hope that readers would recognize AEVB as a general algorithm that can be used to fit a wide range of latent variable models (not just VAE), and apply AEVB to such models that arise in their own fields of research. PyTorch code for all included models are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源