论文标题

RIS AIDER的多源全双工安全通信与硬件障碍的深度强化学习

Deep Reinforcement Learning for RIS-aided Multiuser Full-Duplex Secure Communications with Hardware Impairments

论文作者

Peng, Zhangjie, Zhang, Zhibo, Kong, Lei, Pan, Cunhua, Li, Li, Wang, Jiangzhou

论文摘要

在本文中,我们调查了可重构的智能表面(RIS)多源全双工安全通信系统,并在收发器和RIS处使用硬件损伤,在那里,多个窃听器同时窃听了双向传输信号,并应用RIS来增强保密性能。旨在最大化总和率(SSR),基于基站(BS)的发射光束成形的关节优化问题以及在RIS处的反射光束构成在BS的发射功率约束下和相位变速器的单位模量约束。由于环境是随时间变化的,并且系统是高维的,因此这个非凸优化问题在数学上是可靠的。探索了深度加固学习(DRL)的算法,以通过反复与动态环境相互作用和学习来获得令人满意的解决方案。广泛的仿真结果表明,基于DRL的安全光束算法被证明在改善SSR方面具有显着有效性。还发现,基于DRL的方法的性能可以大大提高,并且可以使用适当的神经网络参数加速神经网络的收敛速度。

In this paper, we investigate a reconfigurable intelligent surface (RIS)-aided multiuser full-duplex secure communication system with hardware impairments at transceivers and RIS, where multiple eavesdroppers overhear the two-way transmitted signals simultaneously, and an RIS is applied to enhance the secrecy performance. Aiming at maximizing the sum secrecy rate (SSR), a joint optimization problem of the transmit beamforming at the base station (BS) and the reflecting beamforming at the RIS is formulated under the transmit power constraint of the BS and the unit modulus constraint of the phase shifters. As the environment is time-varying and the system is high-dimensional, this non-convex optimization problem is mathematically intractable. A deep reinforcement learning (DRL)-based algorithm is explored to obtain the satisfactory solution by repeatedly interacting with and learning from the dynamic environment. Extensive simulation results illustrate that the DRL-based secure beamforming algorithm is proved to be significantly effective in improving the SSR. It is also found that the performance of the DRL-based method can be greatly improved and the convergence speed of neural network can be accelerated with appropriate neural network parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源