论文标题

WRSN的深入强化基于学习的自适应充电政策

A Deep Reinforcement Learning-based Adaptive Charging Policy for WRSNs

论文作者

Bui, Ngoc, Nguyen, Phi Le, Nguyen, Viet Anh, Do, Phan Thuan

论文摘要

无线传感器网络由随机分布的传感器节点组成,用于监视目标或感兴趣的领域。由于每个传感器的电池容量有限,因此维持连续监视的网络是一个挑战。无线电源传输技术正在作为可靠的解决方案,用于通过部署移动充电器(MC)为传感器充电传感器。但是,由于网络中出现不确定性,为MC设计最佳的充电路径是具有挑战性的。由于网络拓扑的不可预测的变化,例如节点故障,传感器的能耗率可能会显着波动。这些变化也导致每个传感器的重要性变化,这在现有作品中通常被认为是相同的。我们在本文中提出了一种使用深度强化学习(DRL)方法提出一种新颖的自适应充电方案来解决这些挑战。具体来说,我们赋予了MC的收费策略,该策略确定了下一个在网络当前状态上充电条件的传感器。然后,我们使用深层神经网络来参数这项收费策略,该策略将通过强化学习技术培训。我们的模型可以适应网络拓扑的自发变化。经验结果表明,所提出的算法的表现要优于现有的按需算法的大幅度余量。

Wireless sensor networks consist of randomly distributed sensor nodes for monitoring targets or areas of interest. Maintaining the network for continuous surveillance is a challenge due to the limited battery capacity in each sensor. Wireless power transfer technology is emerging as a reliable solution for energizing the sensors by deploying a mobile charger (MC) to recharge the sensor. However, designing an optimal charging path for the MC is challenging because of uncertainties arising in the networks. The energy consumption rate of the sensors may fluctuate significantly due to unpredictable changes in the network topology, such as node failures. These changes also lead to shifts in the importance of each sensor, which are often assumed to be the same in existing works. We address these challenges in this paper by proposing a novel adaptive charging scheme using a deep reinforcement learning (DRL) approach. Specifically, we endow the MC with a charging policy that determines the next sensor to charge conditioning on the current state of the network. We then use a deep neural network to parametrize this charging policy, which will be trained by reinforcement learning techniques. Our model can adapt to spontaneous changes in the network topology. The empirical results show that the proposed algorithm outperforms the existing on-demand algorithms by a significant margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源