论文标题

与Hausdorff的统计推断和预测相关数据和空间数据融合 - 高斯流程

Statistical Inferences and Predictions for Areal Data and Spatial Data Fusion with Hausdorff--Gaussian Processes

论文作者

Godoy, Lucas da Cunha, Prates, Marcos Oliveira, Yan, Jun

论文摘要

空间依赖性的准确建模是分析空间数据,影响参数估计和预测的关键。数据的空间结构显着影响有效的统计推断。现有的面积数据模型通常依赖于邻接矩阵,努力区分大小和形状的多边形。相反,数据融合模型依赖于计算密集的数值积分,对中等大型数据集提出了挑战。为了应对这些问题,我们提出了Hausdorff-Gaussian过程(HGP),这是一种利用Hausdorff距离的多功能模型,以捕获点和面积数据中的空间依赖性。集成到广义线性混合效应模型中增强了其适用性,尤其是在解决数据融合挑战时。我们通过一项全面的仿真研究和应用于两个现实世界的情况来验证我们的方法:一种涉及Areal数据,另一种证明其在数据融合中的有效性。结果表明,HGP具有有关拟合优点和预测性能的专业模型的竞争力。总而言之,HGP为建模各种类型和形状的空间数据提供了一种灵活,强大的解决方案,并具有跨越公共卫生和气候科学等领域的潜在应用。

Accurate modeling of spatial dependence is pivotal in analyzing spatial data, influencing parameter estimation and predictions. The spatial structure of the data significantly impacts valid statistical inference. Existing models for areal data often rely on adjacency matrices, struggling to differentiate between polygons of varying sizes and shapes. Conversely, data fusion models rely on computationally intensive numerical integrals, presenting challenges for moderately large datasets. In response to these issues, we propose the Hausdorff-Gaussian process (HGP), a versatile model utilizing the Hausdorff distance to capture spatial dependence in both point and areal data. Integration into generalized linear mixed-effects models enhances its applicability, particularly in addressing data fusion challenges. We validate our approach through a comprehensive simulation study and application to two real-world scenarios: one involving areal data and another demonstrating its effectiveness in data fusion. The results suggest that the HGP is competitive with specialized models regarding goodness-of-fit and prediction performances. In summary, the HGP offers a flexible and robust solution for modeling spatial data of various types and shapes, with potential applications spanning fields such as public health and climate science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源