论文标题
Krämer模型的Kudla-Ropoport猜想的证明
A proof of the Kudla-Rapoport conjecture for Krämer models
论文作者
论文摘要
我们证明了kudla-ropoport的猜想,用于统一的Rapoport的Krämer模型 - 在后面的Zink空间。这是Krämer模型上特殊周期的算术相交数量与修饰的遗传形式的局部密度之间的精确身份。作为一种应用,我们放宽了算术siegel-weil-weiil shimura品种中的局部假设,该假设尤其适用于与想象中的Quadratic领域相关的单一shimura vartieties。
We prove the Kudla--Rapoport conjecture for Krämer models of unitary Rapoport--Zink spaces at ramified places. It is a precise identity between arithmetic intersection numbers of special cycles on Krämer models and modified derived local densities of hermitian forms. As an application, we relax the local assumptions at ramified places in the arithmetic Siegel--Weil formula for unitary Shimura varieties, which is in particular applicable to unitary Shimura vartieties associated to unimodular hermitian lattices over imaginary quadratic fields.