论文标题

在分布式培训中检测和缓解拜占庭攻击

Detection and Mitigation of Byzantine Attacks in Distributed Training

论文作者

Konstantinidis, Konstantinos, Vaswani, Namrata, Ramamoorthy, Aditya

论文摘要

大量的现代机器学习任务要求将大规模分布式簇作为训练管道的关键组成部分。但是,工人节点的异常拜占庭行为会使训练脱轨并损害推理的质量。这种行为可以归因于无意的系统故障或精心策划的攻击。结果,某些节点可能会将任意结果返回到协调培训的参数服务器(PS)。最近的工作考虑了广泛的攻击模型,并探索了强大的聚集和/或计算冗余以纠正扭曲的梯度。 在这项工作中,我们考虑攻击模型从强大的攻击模型:$ q $无所不知的对手,对防御协议充分了解可以从迭代变为迭代变为弱案例:$ q $随机选择的对手有限的勾结能力,仅每次迭代每次迭代一次。我们的算法依赖于冗余任务分配以及对抗行为的检测。我们还显示了我们的方法与文献中考虑的共同假设和设置下的最佳点的融合。对于强烈的攻击,我们证明,与先前的最新面积相比,扭曲梯度的比例从16%-99%的降低。与最先进的方法相比,我们在CIFAR-10数据集上的TOP-1分类精度结果表明,在最复杂的攻击下,准确性(平均相对于强度和弱方案平均)的优势。

A plethora of modern machine learning tasks require the utilization of large-scale distributed clusters as a critical component of the training pipeline. However, abnormal Byzantine behavior of the worker nodes can derail the training and compromise the quality of the inference. Such behavior can be attributed to unintentional system malfunctions or orchestrated attacks; as a result, some nodes may return arbitrary results to the parameter server (PS) that coordinates the training. Recent work considers a wide range of attack models and has explored robust aggregation and/or computational redundancy to correct the distorted gradients. In this work, we consider attack models ranging from strong ones: $q$ omniscient adversaries with full knowledge of the defense protocol that can change from iteration to iteration to weak ones: $q$ randomly chosen adversaries with limited collusion abilities which only change every few iterations at a time. Our algorithms rely on redundant task assignments coupled with detection of adversarial behavior. We also show the convergence of our method to the optimal point under common assumptions and settings considered in literature. For strong attacks, we demonstrate a reduction in the fraction of distorted gradients ranging from 16%-99% as compared to the prior state-of-the-art. Our top-1 classification accuracy results on the CIFAR-10 data set demonstrate 25% advantage in accuracy (averaged over strong and weak scenarios) under the most sophisticated attacks compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源