论文标题
通过可变形的卷积来增强现代和历史手写的文本识别
Boosting Modern and Historical Handwritten Text Recognition with Deformable Convolutions
论文作者
论文摘要
自由图页中的手写文本识别(HTR)是一项具有挑战性的图像理解任务,可以为手写文档的数字化和重复使用其内容提供相关的增强。由于写作风格的变化和页面质量降解的变化,该任务在处理历史文档时变得更加具有挑战性。最先进的HTR方法通常将序列建模的复发结构与卷积神经网络进行视觉特征提取。由于卷积内核是在固定网格上定义的,并在输入图像上移动时独立关注所有输入像素,因此该策略无视手写字符在形状,比例和规模和方向上即使在同一文档中,并且墨水像素比背景更相关。为了应对这些特定的HTR困难,我们建议采用可变形的卷积,这可以根据手头的输入而变形,并更好地适应文本的几何变化。我们设计了两个可变形的架构,并在现代和历史数据集上进行了广泛的实验。实验结果证实了可变形卷积对HTR任务的适用性。
Handwritten Text Recognition (HTR) in free-layout pages is a challenging image understanding task that can provide a relevant boost to the digitization of handwritten documents and reuse of their content. The task becomes even more challenging when dealing with historical documents due to the variability of the writing style and degradation of the page quality. State-of-the-art HTR approaches typically couple recurrent structures for sequence modeling with Convolutional Neural Networks for visual feature extraction. Since convolutional kernels are defined on fixed grids and focus on all input pixels independently while moving over the input image, this strategy disregards the fact that handwritten characters can vary in shape, scale, and orientation even within the same document and that the ink pixels are more relevant than the background ones. To cope with these specific HTR difficulties, we propose to adopt deformable convolutions, which can deform depending on the input at hand and better adapt to the geometric variations of the text. We design two deformable architectures and conduct extensive experiments on both modern and historical datasets. Experimental results confirm the suitability of deformable convolutions for the HTR task.