论文标题

材料合成和硬件安全性的量子机学习

Quantum Machine Learning for Material Synthesis and Hardware Security

论文作者

Beaudoin, Collin, Kundu, Satwik, Topaloglu, Rasit Onur, Ghosh, Swaroop

论文摘要

使用量子计算,本文解决了两个科学压制和日常相关问题,即化学逆转录,这是药物/材料发现和半导体供应链安全性的重要一步。我们表明,量子长的短期内存(QLSTM)是可行合成的可行工具。我们使用QLSTM实现了65%的训练精度,而经典的LSTM可以达到100%。但是,在测试中,我们使用QLSTM实现了80%的精度,而经典LSTM的峰值仅为70%的精度!我们还展示了量子神经网络(QNN)在硬件安全域中的应用,特别是使用一组功率和区域特洛伊木马功能在硬件特洛伊木马(HT)检测中。 QNN模型的检测准确性高达97.27%。

Using quantum computing, this paper addresses two scientifically pressing and day-to-day relevant problems, namely, chemical retrosynthesis which is an important step in drug/material discovery and security of the semiconductor supply chain. We show that Quantum Long Short-Term Memory (QLSTM) is a viable tool for retrosynthesis. We achieve 65% training accuracy with QLSTM, whereas classical LSTM can achieve 100%. However, in testing, we achieve 80% accuracy with the QLSTM while classical LSTM peaks at only 70% accuracy! We also demonstrate an application of Quantum Neural Network (QNN) in the hardware security domain, specifically in Hardware Trojan (HT) detection using a set of power and area Trojan features. The QNN model achieves detection accuracy as high as 97.27%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源