论文标题
从DAPI中得出细胞角蛋白表达和上皮分割的新型深度学习方法
Novel Deep Learning Approach to Derive Cytokeratin Expression and Epithelium Segmentation from DAPI
论文作者
论文摘要
生成对抗网络(GAN)是图像合成的最新技术。在这里,我们提出了DAPI2CK,这是一种基于GAN的新型方法,用于合成细胞角蛋白(CK)在非小细胞肺癌(NSCLC)图像中的免疫荧光(IF)DAPI染色中染色。我们使用合成CK来细分上皮区域,与专家注释相比,该区域与染色CK的分割相同的结果相同。考虑到(MIF)面板(MIF)中的标记数量有限,我们的方法允许通过另一个标记物来代替CK,该标记可以解决肿瘤微环境(TME)的复杂性,以促进患者选择免疫疗法。与染色的CK相反,DAPI2CK不会遭受诸如非特异性CK染色或肿瘤CK表达丧失之类的问题。
Generative Adversarial Networks (GANs) are state of the art for image synthesis. Here, we present dapi2ck, a novel GAN-based approach to synthesize cytokeratin (CK) staining from immunofluorescent (IF) DAPI staining of nuclei in non-small cell lung cancer (NSCLC) images. We use the synthetic CK to segment epithelial regions, which, compared to expert annotations, yield equally good results as segmentation on stained CK. Considering the limited number of markers in a multiplexed IF (mIF) panel, our approach allows to replace CK by another marker addressing the complexity of the tumor micro-environment (TME) to facilitate patient selection for immunotherapies. In contrast to stained CK, dapi2ck does not suffer from issues like unspecific CK staining or loss of tumoral CK expression.