论文标题
在具有通用派生和相关结构的真实封闭字段中可确定的组上
On definable groups in real closed fields with a generic derivation, and related structures
论文作者
论文摘要
我们研究了具有通用推导的真实闭合场理论模型中可定义的有限维组(也称为CODF)。我们证明,任何此类群体都可以完全嵌入半ge群中。我们将结果扩展到更多的一般环境。强烈的模型完善具有通用导数的大几何场的理论,模型完整的RCF的O-Minimal扩展具有通用派生,开放的拓扑字段的开放理论,并具有通用派生。我们还为在几何结构的背景下从通用数据中恢复了可定义的组提供了一般定理。
We study finite-dimensional groups definable in models of the theory of real closed fields with a generic derivation (also known as CODF). We prove that any such group definably embeds in a semialgebraic group. We extend the results to several more general contexts; strongly model complete theories of large geometric fields with a generic derivation, model complete o-minimal expansions of RCF with a generic derivation, open theories of topological fields with a generic derivation. We also give a general theorem on recovering a definable group from generic data in the context of geometric structures.