论文标题

标签对可穿戴人类活动识别系统的数据中毒攻击的标签

Label Flipping Data Poisoning Attack Against Wearable Human Activity Recognition System

论文作者

Shahid, Abdur R., Imteaj, Ahmed, Wu, Peter Y., Igoche, Diane A., Alam, Tauhidul

论文摘要

人类活动识别(HAR)是使用有效的机器学习(ML)方法将传感器数据解释为人类运动的问题。 HAR系统依靠来自不受信任的用户的数据,使他们容易受到数据中毒攻击的影响。在中毒攻击中,攻击者操纵传感器读数以污染训练集,从而误导了har以产生错误的结果。本文介绍了针对HAR系统的标签翻转数据中毒攻击的设计,其中传感器读数在数据收集阶段发生了恶意更改。由于传感环境中的噪音高和不确定性,这种攻击对识别系统构成了严重威胁。此外,当将活动识别模型部署在安全至关重要的应用中时,标记翻转攻击的脆弱性是危险的。本文阐明了如何通过基于智能手机的传感器数据收集应用程序在实践中进行攻击。据我们所知,这是一项较早的研究工作,它通过标签翻转中毒探索了攻击HAR模型。我们实施了提出的攻击,并根据以下机器学习算法对活动识别模型进行测试:多层感知器,决策树,随机森林和XGBoost。最后,我们评估了针对拟议攻击的基于K-Nearest邻居(KNN)的防御机制的有效性。

Human Activity Recognition (HAR) is a problem of interpreting sensor data to human movement using an efficient machine learning (ML) approach. The HAR systems rely on data from untrusted users, making them susceptible to data poisoning attacks. In a poisoning attack, attackers manipulate the sensor readings to contaminate the training set, misleading the HAR to produce erroneous outcomes. This paper presents the design of a label flipping data poisoning attack for a HAR system, where the label of a sensor reading is maliciously changed in the data collection phase. Due to high noise and uncertainty in the sensing environment, such an attack poses a severe threat to the recognition system. Besides, vulnerability to label flipping attacks is dangerous when activity recognition models are deployed in safety-critical applications. This paper shades light on how to carry out the attack in practice through smartphone-based sensor data collection applications. This is an earlier research work, to our knowledge, that explores attacking the HAR models via label flipping poisoning. We implement the proposed attack and test it on activity recognition models based on the following machine learning algorithms: multi-layer perceptron, decision tree, random forest, and XGBoost. Finally, we evaluate the effectiveness of K-nearest neighbors (KNN)-based defense mechanism against the proposed attack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源