论文标题
Obfunas:基于神经架构的DNN混淆方法
ObfuNAS: A Neural Architecture Search-based DNN Obfuscation Approach
论文作者
论文摘要
恶意建筑提取已成为对深神经网络(DNN)安全性的关键关注。作为辩护,提议建筑混淆,以将受害者DNN改造为不同的建筑。尽管如此,我们观察到,只有提取混淆的DNN结构,对手仍然可以重新训练具有高性能(例如精度)的替代模型,从而使混淆技术无效。为了减轻这种探索不足的漏洞,我们提出了obfunas,将DNN体系结构混淆转换为神经体系结构搜索(NAS)问题。 Obfunas结合使用具有功能性的混淆策略,确保混淆的DNN架构只能达到比受害者更低的精度。我们使用NAS Bench-101和NAS Bench-301(Nas-Bench-101和NAS-Bench-301)的开源架构数据集验证了Obfunas的性能。实验结果表明,在给定的Flops约束中,Obfunas可以成功地找到受害者模型的最佳掩码,导致对只有0.14倍FLOPS开销的攻击者的推理精度降解,高达2.6%。该代码可在以下网址获得:https://github.com/tongzhou0101/obfunas。
Malicious architecture extraction has been emerging as a crucial concern for deep neural network (DNN) security. As a defense, architecture obfuscation is proposed to remap the victim DNN to a different architecture. Nonetheless, we observe that, with only extracting an obfuscated DNN architecture, the adversary can still retrain a substitute model with high performance (e.g., accuracy), rendering the obfuscation techniques ineffective. To mitigate this under-explored vulnerability, we propose ObfuNAS, which converts the DNN architecture obfuscation into a neural architecture search (NAS) problem. Using a combination of function-preserving obfuscation strategies, ObfuNAS ensures that the obfuscated DNN architecture can only achieve lower accuracy than the victim. We validate the performance of ObfuNAS with open-source architecture datasets like NAS-Bench-101 and NAS-Bench-301. The experimental results demonstrate that ObfuNAS can successfully find the optimal mask for a victim model within a given FLOPs constraint, leading up to 2.6% inference accuracy degradation for attackers with only 0.14x FLOPs overhead. The code is available at: https://github.com/Tongzhou0101/ObfuNAS.