论文标题

通过微调注意分支机构对机器人导航的深Q网络的视觉说明

Visual Explanation of Deep Q-Network for Robot Navigation by Fine-tuning Attention Branch

论文作者

Maruyama, Yuya, Fukui, Hiroshi, Hirakawa, Tsubasa, Yamashita, Takayoshi, Fujiyoshi, Hironobu, Sugiura, Komei

论文摘要

具有深入增强学习(RL)的机器人导航可实现更高的性能,并在复杂的环境下表现良好。同时,对深度RL模型的决策的解释成为更多自动机器人安全性和可靠性的关键问题。在本文中,我们提出了一种基于深入RL模型的注意力分支的视觉解释方法。我们将注意力分支与预先训练的深度RL模型联系起来,并通过以有监督的学习方式使用受过训练的深度RL模型作为正确标签来训练注意力分支。由于注意力分支经过训练以输出与深RL模型相同的结果,因此获得的注意图与具有更高可解释性的代理作用相对应。机器人导航任务的实验结果表明,所提出的方法可以生成可解释的注意图以进行视觉解释。

Robot navigation with deep reinforcement learning (RL) achieves higher performance and performs well under complex environment. Meanwhile, the interpretation of the decision-making of deep RL models becomes a critical problem for more safety and reliability of autonomous robots. In this paper, we propose a visual explanation method based on an attention branch for deep RL models. We connect attention branch with pre-trained deep RL model and the attention branch is trained by using the selected action by the trained deep RL model as a correct label in a supervised learning manner. Because the attention branch is trained to output the same result as the deep RL model, the obtained attention maps are corresponding to the agent action with higher interpretability. Experimental results with robot navigation task show that the proposed method can generate interpretable attention maps for a visual explanation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源