论文标题
特定于域特异性风险最小化,以泛化的概括
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
论文作者
论文摘要
最近的域概括(DG)方法通常使用从源域中学到的假设来推断看不见的目标域。但是,这种假设可以任意远离目标域的最佳假设,这是由称为``适应性差距''的差距引起的。如果不从看不见的测试样本中利用域信息,则适应性差距估计和最小化是棘手的,这阻碍了我们将模型鲁棒化为任何未知分布。在本文中,我们首先建立了一个明确考虑适应性差距的概括结合。我们的约束力激发了两种降低差距的策略:第一个是结合多个分类器以丰富假设空间,然后我们提出了有效的差距估计方法来指导目标为目标选择更好的假设。另一种方法是通过使用在线目标样本调整模型参数直接最小化差距。因此,我们建议\ textbf {特定于域的风险最小化(DRM)}。在培训期间,DRM分别对不同源域的分布进行建模;为了推断,DRM使用每个到达目标样本的源假设执行在线模型转向。广泛的实验证明了所提出的DRM对域概括的有效性,具有以下优点:1)在不同的分布转移设置上,它的表现明显优于竞争基线; 2)与Vanilla经验风险最小化相比,它在所有源域上都可以在所有源域上获得可比性或优质的精度; 3)在培训期间,它仍然保持简单,效率,4)与不变的学习方法是互补的。
Recent domain generalization (DG) approaches typically use the hypothesis learned on source domains for inference on the unseen target domain. However, such a hypothesis can be arbitrarily far from the optimal one for the target domain, induced by a gap termed ``adaptivity gap''. Without exploiting the domain information from the unseen test samples, adaptivity gap estimation and minimization are intractable, which hinders us to robustify a model to any unknown distribution. In this paper, we first establish a generalization bound that explicitly considers the adaptivity gap. Our bound motivates two strategies to reduce the gap: the first one is ensembling multiple classifiers to enrich the hypothesis space, then we propose effective gap estimation methods for guiding the selection of a better hypothesis for the target. The other method is minimizing the gap directly by adapting model parameters using online target samples. We thus propose \textbf{Domain-specific Risk Minimization (DRM)}. During training, DRM models the distributions of different source domains separately; for inference, DRM performs online model steering using the source hypothesis for each arriving target sample. Extensive experiments demonstrate the effectiveness of the proposed DRM for domain generalization with the following advantages: 1) it significantly outperforms competitive baselines on different distributional shift settings; 2) it achieves either comparable or superior accuracies on all source domains compared to vanilla empirical risk minimization; 3) it remains simple and efficient during training, and 4) it is complementary to invariant learning approaches.