论文标题
SDA-SNE:通过多方向动态编程的空间不连续感知表面正常估计
SDA-SNE: Spatial Discontinuity-Aware Surface Normal Estimation via Multi-Directional Dynamic Programming
论文作者
论文摘要
最新的(SOTA)表面正常估计器(SNES)通常以端到端的方式将深度图像转化为表面正常地图。尽管这样的打se大大降低了效率和准确性之间的权衡,但它们在空间不连续性(例如边缘和山脊)上的表现仍然不令人满意。为了解决这个问题,本文首先引入了一种新型的多方向动态编程策略,以通过最大程度地减少(路径)平滑度能量来适应性地确定嵌入式(共平面3D点)。然后,可以使用新型的递归多项式插值算法对深度梯度进行迭代进行完善,从而有助于产生更合理的表面正常状态。我们引入的空间不连续性意识(SDA)深度梯度改进策略与任何深度到正常的SNE都兼容。我们提议的SDA-SNNE的性能要比所有其他SOTA方法,尤其是在空间不连续性方面的其他方法要高得多。我们进一步评估了SDA-SNE在不同的迭代方面的性能,结果表明它仅在少量迭代后会快速收敛。这样可以确保其在需要实时性能的各种机器人技术和计算机视觉应用中的高效率。在数据集中进行的其他实验随机噪声不同,进一步验证了我们SDA-SNE的鲁棒性和环境适应性。我们的源代码,演示视频和补充材料可在mias.group/sda-sne上公开获得。
The state-of-the-art (SoTA) surface normal estimators (SNEs) generally translate depth images into surface normal maps in an end-to-end fashion. Although such SNEs have greatly minimized the trade-off between efficiency and accuracy, their performance on spatial discontinuities, e.g., edges and ridges, is still unsatisfactory. To address this issue, this paper first introduces a novel multi-directional dynamic programming strategy to adaptively determine inliers (co-planar 3D points) by minimizing a (path) smoothness energy. The depth gradients can then be refined iteratively using a novel recursive polynomial interpolation algorithm, which helps yield more reasonable surface normals. Our introduced spatial discontinuity-aware (SDA) depth gradient refinement strategy is compatible with any depth-to-normal SNEs. Our proposed SDA-SNE achieves much greater performance than all other SoTA approaches, especially near/on spatial discontinuities. We further evaluate the performance of SDA-SNE with respect to different iterations, and the results suggest that it converges fast after only a few iterations. This ensures its high efficiency in various robotics and computer vision applications requiring real-time performance. Additional experiments on the datasets with different extents of random noise further validate our SDA-SNE's robustness and environmental adaptability. Our source code, demo video, and supplementary material are publicly available at mias.group/SDA-SNE.