论文标题

Potts模型中的冻结与平衡动力学

Freezing vs. equilibration dynamics in the Potts model

论文作者

Chippari, Francesco, Picco, Marco

论文摘要

我们研究了不同的BI/三维晶格拓扑上的$ Q $ POTTS模型的淬火动力。特别是我们对瞬时淬火感兴趣,从$ t_i \ rightarrow \ infty $到$ t \ t \ leq t_s $,其中$ t_s $是(pseudo)spinodal温度。目的是解释为什么在较大的$ q $限制中,低温动力学在某些晶格上冻结,而在其他晶格上,很容易达到平衡配置。详细分析了立方体($ 3D $)和三角形($ 2D $)的格子。我们表明,当晶格具有无环\ textit {统一结构}时,动力学会在系统循环时进入平衡时,无论特定考虑的晶格的配位数($ z $)。

We study the quench dynamics of the $q$ Potts model on different bi/tri-dimensional lattice topologies. In particular we are interested in instantaneous quenches from $T_i \rightarrow \infty$ to $T \leq T_s$, where $T_s$ is the (pseudo)-spinodal temperature. The goal is to explain why, in the large-$q$ limit, the low-temperature dynamics freezes on some lattices while, on others, the equilibrium configuration is easily reached. The cubic ($3d$) and the triangular ($2d$) lattices are analysed in detail. We show that the dynamics blocks when lattices have acyclic \textit{unitary structures} while the system goes to the equilibrium when these are cyclic, no matter the coordination number ($z$) of the particular considered lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源