论文标题
部分可观测时空混沌系统的无模型预测
The Gaia-ESO Survey: Preparing the ground for 4MOST & WEAVE galactic surveys. Chemical evolution of lithium with machine learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
With its origin coming from several sources (Big Bang, stars, cosmic rays) and given its strong depletion during its stellar lifetime, the lithium element is of great interest as its chemical evolution in the Milky Way is not well understood at present. To help constrain stellar and galactic chemical evolution models, numerous and precise lithium abundances are necessary for a large range of evolutionary stages, metallicities, and Galactic volume. In the age of stellar parametrization on industrial scales, spectroscopic surveys such as APOGEE, GALAH, RAVE, and LAMOST have used data-driven methods to rapidly and precisely infer stellar labels (atmospheric parameters and abundances). To prepare the ground for future spectroscopic surveys such as 4MOST and WEAVE, we aim to apply machine learning techniques to lithium measurements and analyses. We trained a convolution neural network (CNN), coupling Gaia-ESO Survey iDR6 stellar labels (Teff, log(g), [Fe/H], and A(Li)) and GIRAFFE HR15N spectra, to infer the atm parameters and lithium abundances for ~40,000 stars. We show that the CNN properly learns the physics of the stellar labels, from relevant spectral features through a broad range of evolutionary stages and stellar parameters. The Li feature at 6707.8 A is successfully singled out by our CNN, among the thousands of lines. Rare objects such as Li-rich giants are found in our sample. This level of performance is achieved thanks to a meticulously built, high-quality, and homogeneous training sample. The CNN approach is very well adapted for the next generations of spectroscopic surveys aimed at studying (among other elements) lithium, such as the 4MIDABLE-LR/HR (4MOST Milky Way disk and bulge low- and high-resolution) surveys. In this context, the caveats of ML applications should be appropriately investigated, along with the realistic label uncertainties and upper limits for abundances.