论文标题

部分可观测时空混沌系统的无模型预测

Towards Learning in Grey Spatiotemporal Systems: A Prophet to Non-consecutive Spatiotemporal Dynamics

论文作者

Zhou, Zhengyang, Kuo, Yang, Sun, Wei, Wang, Binwu, Zhou, Min, Zong, Yunan, Wang, Yang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Spatiotemporal forecasting is an imperative topic in data science due to its diverse and critical applications in smart cities. Existing works mostly perform consecutive predictions of following steps with observations completely and continuously obtained, where nearest observations can be exploited as key knowledge for instantaneous status estimation. However, the practical issues of early activity planning and sensor failures elicit a brand-new task, i.e., non-consecutive forecasting. In this paper, we define spatiotemporal learning systems with missing observation as Grey Spatiotemporal Systems (G2S) and propose a Factor-Decoupled learning framework for G2S (FDG2S), where the core idea is to hierarchically decouple multi-level factors and enable both flexible aggregations and disentangled uncertainty estimations. Firstly, to compensate for missing observations, a generic semantic-neighboring sequence sampling is devised, which selects representative sequences to capture both periodical regularity and instantaneous variations. Secondly, we turn the predictions of non-consecutive statuses into inferring statuses under expected combined exogenous factors. In particular, a factor-decoupled aggregation scheme is proposed to decouple factor-induced predictive intensity and region-wise proximity by two energy functions of conditional random field. To infer region-wise proximity under flexible factor-wise combinations and enable dynamic neighborhood aggregations, we further disentangle compounded influences of exogenous factors on region-wise proximity and learn to aggregate them. Given the inherent incompleteness and critical applications of G2S, a DisEntangled Uncertainty Quantification is put forward, to identify two types of uncertainty for reliability guarantees and model interpretations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源